Skip to main content

A Symplectic Minimum Variational Principle for Dissipative Dynamical Systems

  • Conference paper
  • First Online:
Geometric Science of Information (GSI 2017)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 10589))

Included in the following conference series:

Abstract

Using the concept of symplectic subdifferential, we propose a modification of the Hamiltonian formalism which can be used for dissipative systems. The formalism is first illustrated through an application of the standard inelasticity in small strains. Some hints concerning possible extensions to non-standard plasticity and finite strains are then given. Finally, we show also how the dissipative transition between macrostates can be viewed as an optimal transportation problem.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Brezis, H., Ekeland, I.: Un principe variationnel associé à certaines équations paraboliques. I. Le cas indépendant du temps. C. R. Acad. Sci. Paris Sér. A-B 282, 971–974 (1976)

    MATH  MathSciNet  Google Scholar 

  2. Buliga, M.: Hamiltonian inclusions with convex dissipation with a view towards applications. Math. Appl. 1(2), 228–251 (2009)

    MATH  MathSciNet  Google Scholar 

  3. Buliga, M., de Saxcé, G.: A symplectic Brezis-Ekeland-Nayroles principle. Math. Mech. Solid, 1–15 (2016). doi:10.1177/1081286516629532

  4. Dang Van, K., de Saxcé, G., Maier, G., Polizzotto, C., Ponter, A., Siemaszko, A., Weichert, D.: In: Weichert, D., Maier, G. (eds.) Inelastic Behaviour of Structures under Variable Repeated Loads. CISM International Centre for Mechanical Sciences, Courses and Lectures, vol. 432. Springer, Vienna (2002)

    Google Scholar 

  5. de Saxcé, G., Feng, Z.Q.: New inequation and functional for contact with friction: the implicit standard material approach. Int. J. Mech. Struct. Mach. 19(3), 301–325 (1991)

    Article  Google Scholar 

  6. Nayroles, B.: Deux théorèmes de minimum pour certains systèmes dissipatifs. C. R. Acad. Sci. Paris Sér. A-B 282, A1035–A1038 (1976)

    MATH  MathSciNet  Google Scholar 

Download references

Aknowledgement

This work was performed thanks to the international cooperation project Dissipative Dynamical Systems by Geometrical and Variational Methods and Application to Viscoplastic Structures Subjected to Shock Waves (DDGV) supported by the Agence Nationale de la Recherche (ANR) and the Deutsche Forchungsgemeinschaft (DFG).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Géry de Saxcé .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Oueslati, A., Nguyen, A.D., de Saxcé, G. (2017). A Symplectic Minimum Variational Principle for Dissipative Dynamical Systems. In: Nielsen, F., Barbaresco, F. (eds) Geometric Science of Information. GSI 2017. Lecture Notes in Computer Science(), vol 10589. Springer, Cham. https://doi.org/10.1007/978-3-319-68445-1_42

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-68445-1_42

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-68444-4

  • Online ISBN: 978-3-319-68445-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics