Skip to main content

Self-oscillations of a Vocal Apparatus: A Port-Hamiltonian Formulation

  • Conference paper
  • First Online:
Geometric Science of Information (GSI 2017)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 10589))

Included in the following conference series:

  • 2413 Accesses

Abstract

Port Hamiltonian systems (PHS) are open passive systems that fulfil a power balance: they correspond to dynamical systems composed of energy-storing elements, energy-dissipating elements and external ports, endowed with a geometric structure (called Dirac structure) that encodes conservative interconnections. This paper presents a minimal PHS model of the full vocal apparatus. Elementary components are: (a) an ideal subglottal pressure supply, (b) a glottal flow in a mobile channel, (c) vocal-folds, (d) an acoustic resonator reduced to a single mode. Particular attention is paid to the energetic consistency of each component, to passivity and to the conservative interconnection. Simulations are presented. They show the ability of the model to produce a variety of regimes, including self-sustained oscillations. Typical healthy or pathological configuration laryngeal configurations are explored.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. van den Berg, J.: On the air resistance and the Bernoulli effect of the Human Larynx. J. Acous. Soc. Am. 29(5), 626–631 (1957)

    Article  Google Scholar 

  2. van der Schaft, A., Jeltsema, D.: Port-Hamiltonian Systems Theory: an Introductory Overview. Now Publishers Inc., Hanover (2014)

    Google Scholar 

  3. Encina, M., et al.: Vocal fold modeling through the port-Hamiltonian systems approach. In: IEEE Conference on Control Applications (CCA), pp. 1558–1563 (2015)

    Google Scholar 

  4. Maschke, B., et al.: An intrinsic Hamiltonian formulation of network dynamics: non-standard Poisson structures and gyrators. J. Frankl. Inst. 329(5), 923–966 (1992)

    Article  MATH  Google Scholar 

  5. Flanagan, J., Landgraf, L.: Self-oscillating source for vocal-tract synthesizers. IEEE Trans. Audio Electroacous. 16(1), 57–64 (1968)

    Article  Google Scholar 

  6. Awrejcewicz, J.: Numerical analysis of the oscillations of human vocal cords. Nonlinear Dyn. 2, 35–52 (1991)

    Article  Google Scholar 

  7. Lopes, N., Hélie, T.: Energy balanced model of a jet interacting with a brass player’s lip. Acta Acust United Acust. 102(1), 141–154 (2016)

    Article  Google Scholar 

  8. Lopes, N.: Approche passive pour la modélisation, la simulation et l’étude d’un banc de test robotisé pour les instruments de type cuivre. Ph.D. thesis, UPMC, Paris (2016)

    Google Scholar 

  9. Falaize, A.: PyPHS: passive modeling and simulation in python. Software. https://afalaize.github.io/pyphs/. last viewed on 21st April 2017

  10. Badin, P., Fant, G.: Notes on vocal tract computation. STL-QPSR 25(2–3), 53–108 (1984)

    Google Scholar 

  11. Giovanni, A., et al.: Nonlinear behavior of vocal fold vibration: the role of coupling between the vocal folds. J. Voice 13(4), 465–476 (1999)

    Article  Google Scholar 

Download references

Acknowledgement

The first author acknowledges the support of the Collaborative Research DFG and ANR project INFIDHEM ANR-16-CE92-0028.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fabrice Silva .

Editor information

Editors and Affiliations

A Dynamics of the glottal flow

A Dynamics of the glottal flow

The dynamics for the mean velocities can also be derived from the volume integration of the Euler equation (4). Using the gradient theorem, it comes that

$$\begin{aligned} m(h)\dot{v}_0 = L h(t) \left( P_{tot}^- - P_{tot}^+\right) \quad \text { and }\quad m(h)\ddot{y}_m = F_r^p - F_l^p. \end{aligned}$$
(8)

The energy balance for the glottal flow writes down as:

$$\begin{aligned} \dot{\varepsilon }(t) + \int _{S^-\cup S^+} \left( p+\frac{1}{2}\rho |v|^2\right) \left( v\cdot n\right) + \int _{S_l\cup S_r} p\left( v\cdot n\right) =0 \end{aligned}$$
(9)

where n is the outgoing normal. As the normal velocity is uniform on the walls, the last term of the energy balance reduces to

$$\begin{aligned} \int _{S_l\cup S_r} p\left( v\cdot n\right) =-\dot{y}_r\int _{S_r} p + \dot{y}_l\int _{S_l} p =\dot{y}_m\left( F_l^p-F_r^p\right) +\frac{\dot{h}}{2}\left( F_r^p+F_l^p\right) . \end{aligned}$$
(10)

The same applies on \(S^-\cup S^+\) where \(v\cdot n = \pm v_x(x=\pm \ell )\) does not depend on y:

$$\begin{aligned} \int _{S^-\cup S^+} p_{tot}\left( v\cdot n\right)&= v_x(\ell )\int _{S^+} p_{tot} - v_x(-\ell )\int _{S^-} p_{tot}\nonumber \\&= L v_0\left( P_{tot}^+ - P_{tot}^-\right) - L \ell \frac{\dot{h}}{h}\left( P_{tot}^+ + P_{tot}^-\right) . \end{aligned}$$
(11)

Thus, \( \displaystyle \dot{\varepsilon } = \dot{y}_m\left( F_r^p-F_l^p\right) -\frac{\dot{h}}{2}\left( F_r^p+F_l^p\right) + L h(t) v_0\left( P_{tot}^- - P_{tot}^+\right) + L \ell \dot{h} \left( P_{tot}^- + P_{tot}^+\right) \). In the meanwhile, the kinetic energy in Eq. (6) can be derived against time: \( \displaystyle \dot{\varepsilon } = m(h)\left( v_0\dot{v}_0 + \dot{y}_m\ddot{y}_m\right) + m_3(h)\dot{h}\ddot{h} +\frac{\partial H}{\partial h}\dot{h}\). The identification of the contribution of the mean axial and transverse velocities (see Eq. (8)) leads to the dynamics of the glottal channel expansion rate :

$$\begin{aligned} m_3\ddot{h} = L \ell \left( P_{tot}^- + P_{tot}^+\right) - \frac{F_r^p + F_l^p}{2} -\frac{\partial H}{\partial h}. \end{aligned}$$
(12)

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Hélie, T., Silva, F. (2017). Self-oscillations of a Vocal Apparatus: A Port-Hamiltonian Formulation. In: Nielsen, F., Barbaresco, F. (eds) Geometric Science of Information. GSI 2017. Lecture Notes in Computer Science(), vol 10589. Springer, Cham. https://doi.org/10.1007/978-3-319-68445-1_44

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-68445-1_44

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-68444-4

  • Online ISBN: 978-3-319-68445-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics