Skip to main content

A Variational Formulation for Fluid Dynamics with Irreversible Processes

  • Conference paper
  • First Online:
Geometric Science of Information (GSI 2017)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 10589))

Included in the following conference series:

  • 2417 Accesses

Abstract

In this paper, we present a variational formulation for heat conducting viscous fluids, which extends the Hamilton principle of continuum mechanics to include irreversible processes. This formulation follows from the general variational description of nonequilibrium thermodynamics introduced in [3, 4] for discrete and continuum systems. It relies on the concept of thermodynamic displacement. The irreversibility is encoded into a nonlinear nonholonomic constraint given by the expression of the entropy production associated to the irreversible processes involved.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    The notion of thermal displacement was first used by [13] and in the continuum setting by [9]. We refer to the Appendix of [11] for an historical account.

  2. 2.

    In this paper we do not describe the functional analytic setting needed to rigorously work in the framework of infinite dimensional manifolds. For example, one can assume that the diffeomorphisms are of some given Sobolev class, regular enough (at least of class \(C ^1\)), so that \({\text {Diff}}_0( \mathcal {D} )\) is a smooth infinite dimensional manifold and a topological group with smooth right translation, [1].

References

  1. Ebin, D.G., Marsden, J.E.: Groups of diffeomorphisms and the motion of an incompressible fluid. Ann. Math. 92, 102–163 (1970)

    Article  MATH  MathSciNet  Google Scholar 

  2. Gay-Balmaz, F.: A variational derivation of the thermodynamics of a moist atmosphere with irreversible processes (2017). https://arxiv.org/pdf/1701.03921.pdf

  3. Gay-Balmaz, F., Yoshimura, H.: A Lagrangian variational formulation for nonequilibrium thermodynamics. Part I: discrete systems. J. Geom. Phys. 111, 169–193 (2016)

    Article  MATH  MathSciNet  Google Scholar 

  4. Gay-Balmaz, F., Yoshimura, H.: A Lagrangian variational formulation for nonequilibrium thermodynamics. Part II: continuum systems. J. Geom. Phys. 111, 194–212 (2016)

    Article  MATH  MathSciNet  Google Scholar 

  5. Gay-Balmaz, F., Yoshimura, H.: A free energy Lagrangian variational formulation of the Navier-Stokes-Fourier system. Int. J. Geom. Methods Mod. Phys. (2017, to appear)

    Google Scholar 

  6. Gay-Balmaz, F., Yoshimura, H.: Dirac structures in nonequilibrium thermodynamics, preprint (2017). https://arxiv.org/pdf/1704.03935.pdf

  7. Gruber, C.: Thermodynamique et Mécanique Statistique, Institut de physique théorique. EPFL (1997)

    Google Scholar 

  8. Gruber, C.: Thermodynamics of systems with internal adiabatic constraints: time evolution of the adiabatic piston. Eur. J. Phys. 20, 259–266 (1999)

    Article  MATH  Google Scholar 

  9. Green, A.E., Naghdi, P.M.: A re-examination of the basic postulates of thermomechanics. Proc. R. Soc. Lon. Ser. A Math. Phys. Eng. Sci. 432(1885), 171–194 (1991)

    Article  MATH  MathSciNet  Google Scholar 

  10. Holm, D.D., Marsden, J.E., Ratiu, T.S.: The Euler-Poincaré equations and semidirect products with applications to continuum theories. Adv. Math. 137, 1–81 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  11. Podio-Guidugli, P.: A virtual power format for thermomechanics. Contin. Mech. Thermodyn. 20(8), 479–487 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  12. Stueckelberg, E.C.G., Scheurer, P.B.: Thermocinétique phénoménologique galiléenne. Birkhäuser, Basel (1974)

    MATH  Google Scholar 

  13. von Helmholtz, H.: Studien zur Statik monocyklischer Systeme. Sitzungsberichte der Königlich Preussischen Akademie der Wissenschaften zu Berlin, pp. 159–177 (1884)

    Google Scholar 

Download references

Acknowledgements

F.G.B. is partially supported by the ANR project GEOMFLUID, ANR-14-CE23-0002-01; H.Y. is partially supported by JSPS Grant-in-Aid for Scientific Research (26400408, 16KT0024, 24224004), Waseda University (SR2017K-167), and the MEXT “Top Global University Project”.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to François Gay-Balmaz .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Gay-Balmaz, F., Yoshimura, H. (2017). A Variational Formulation for Fluid Dynamics with Irreversible Processes. In: Nielsen, F., Barbaresco, F. (eds) Geometric Science of Information. GSI 2017. Lecture Notes in Computer Science(), vol 10589. Springer, Cham. https://doi.org/10.1007/978-3-319-68445-1_47

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-68445-1_47

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-68444-4

  • Online ISBN: 978-3-319-68445-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics