Abstract
In this paper, we present a variational formulation for heat conducting viscous fluids, which extends the Hamilton principle of continuum mechanics to include irreversible processes. This formulation follows from the general variational description of nonequilibrium thermodynamics introduced in [3, 4] for discrete and continuum systems. It relies on the concept of thermodynamic displacement. The irreversibility is encoded into a nonlinear nonholonomic constraint given by the expression of the entropy production associated to the irreversible processes involved.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
- 2.
In this paper we do not describe the functional analytic setting needed to rigorously work in the framework of infinite dimensional manifolds. For example, one can assume that the diffeomorphisms are of some given Sobolev class, regular enough (at least of class \(C ^1\)), so that \({\text {Diff}}_0( \mathcal {D} )\) is a smooth infinite dimensional manifold and a topological group with smooth right translation, [1].
References
Ebin, D.G., Marsden, J.E.: Groups of diffeomorphisms and the motion of an incompressible fluid. Ann. Math. 92, 102–163 (1970)
Gay-Balmaz, F.: A variational derivation of the thermodynamics of a moist atmosphere with irreversible processes (2017). https://arxiv.org/pdf/1701.03921.pdf
Gay-Balmaz, F., Yoshimura, H.: A Lagrangian variational formulation for nonequilibrium thermodynamics. Part I: discrete systems. J. Geom. Phys. 111, 169–193 (2016)
Gay-Balmaz, F., Yoshimura, H.: A Lagrangian variational formulation for nonequilibrium thermodynamics. Part II: continuum systems. J. Geom. Phys. 111, 194–212 (2016)
Gay-Balmaz, F., Yoshimura, H.: A free energy Lagrangian variational formulation of the Navier-Stokes-Fourier system. Int. J. Geom. Methods Mod. Phys. (2017, to appear)
Gay-Balmaz, F., Yoshimura, H.: Dirac structures in nonequilibrium thermodynamics, preprint (2017). https://arxiv.org/pdf/1704.03935.pdf
Gruber, C.: Thermodynamique et Mécanique Statistique, Institut de physique théorique. EPFL (1997)
Gruber, C.: Thermodynamics of systems with internal adiabatic constraints: time evolution of the adiabatic piston. Eur. J. Phys. 20, 259–266 (1999)
Green, A.E., Naghdi, P.M.: A re-examination of the basic postulates of thermomechanics. Proc. R. Soc. Lon. Ser. A Math. Phys. Eng. Sci. 432(1885), 171–194 (1991)
Holm, D.D., Marsden, J.E., Ratiu, T.S.: The Euler-Poincaré equations and semidirect products with applications to continuum theories. Adv. Math. 137, 1–81 (1998)
Podio-Guidugli, P.: A virtual power format for thermomechanics. Contin. Mech. Thermodyn. 20(8), 479–487 (2009)
Stueckelberg, E.C.G., Scheurer, P.B.: Thermocinétique phénoménologique galiléenne. Birkhäuser, Basel (1974)
von Helmholtz, H.: Studien zur Statik monocyklischer Systeme. Sitzungsberichte der Königlich Preussischen Akademie der Wissenschaften zu Berlin, pp. 159–177 (1884)
Acknowledgements
F.G.B. is partially supported by the ANR project GEOMFLUID, ANR-14-CE23-0002-01; H.Y. is partially supported by JSPS Grant-in-Aid for Scientific Research (26400408, 16KT0024, 24224004), Waseda University (SR2017K-167), and the MEXT “Top Global University Project”.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2017 Springer International Publishing AG
About this paper
Cite this paper
Gay-Balmaz, F., Yoshimura, H. (2017). A Variational Formulation for Fluid Dynamics with Irreversible Processes. In: Nielsen, F., Barbaresco, F. (eds) Geometric Science of Information. GSI 2017. Lecture Notes in Computer Science(), vol 10589. Springer, Cham. https://doi.org/10.1007/978-3-319-68445-1_47
Download citation
DOI: https://doi.org/10.1007/978-3-319-68445-1_47
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-68444-4
Online ISBN: 978-3-319-68445-1
eBook Packages: Computer ScienceComputer Science (R0)