Skip to main content

Method of Orbits of Co-Associated Representation in Thermodynamics of the Lie Non-compact Groups

  • Conference paper
  • First Online:
Geometric Science of Information (GSI 2017)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 10589))

Included in the following conference series:

  • 2429 Accesses

Abstract

A method of the solution of the main problem of homogeneous spaces thermodynamics for non-compact Lie groups is presented in the work. The method originates from formalism of non-commutative Fourier analysis based on method of coadjoint orbits. A formula that allows efficiently evaluate heat kernel and statistic sum on non-compact Lie group is obtained. The algorithm of construction of high temperature heat kernel expansion is also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Hurt, N.: Geometric Quantization in Action. D. Reidel Publishing Company, Dordrecht (1983)

    Book  MATH  Google Scholar 

  2. Minakshisundaram, S., Pleijel, A.: Some properties of the eigen functions of the laplace operator on riemannian manifolds. Can. J. Math. 1, 242–256 (1949)

    Article  MATH  Google Scholar 

  3. Varadhan, S.R.S.: On the behavior of the fundamental solution of the heat equation. Comm. Pure Appl. Math. 20, 431–455 (1967)

    Article  MATH  MathSciNet  Google Scholar 

  4. Molchanov, S.A.: Diffusion processes and riemannian geometry. Uspekhi Mathem. Nauk. 30(1), 57 pp. (1975)

    Google Scholar 

  5. Shirokov, I.V.: Darboux coordinates on K-orbits and the spectra of Casimir operators on Lie groups. Theoretical and Mathematical Physics 123(3) (2000)

    Google Scholar 

  6. Kirillov, A.A.: Elements of the Theory of Representations. Springer, Heidelberg (1976)

    Book  MATH  Google Scholar 

  7. Souriau, J.-M.: Structures Des Systmes Dynamiques. Dunod, Paris (1970)

    Google Scholar 

  8. Kostant, B.: Quantization and unitary representations. In: Taam, C.T. (ed.) Lectures in Modern Analysis and Applications III. LNM, vol. 170, pp. 87–208. Springer, Heidelberg (1970). doi:10.1007/BFb0079068

    Chapter  Google Scholar 

  9. Barut, A., Razcka, R.: Theory of Group Representations and Applications. World Scientific (1986)

    Google Scholar 

  10. Baranovsky, S.P., Mikheyev, V.V., Shirokov, I.V.: Quantum hamiltonian systems on K-orbits: semiclassical spectrum of the asymmetric top. Theor. Mathe. Phys. 129(1) (2001)

    Google Scholar 

  11. Nencka, H., Streater, R.F.: Information geometry for some Lie algebras. Infin. Dimens. Anal. Quantum Probab. Relat. Top. 2, 441–460 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  12. Barbaresco, F.: Geometric theory of heat from souriau lie groups thermodynamics and koszul hessian geometry. Entropy 18, 386 (2016)

    Article  Google Scholar 

  13. Mikheyev, V.V., Shirokov, I.V.: Application of coadjoint orbits in the thermodynamics of non-compact manifolds. Electron. J. Theor. Phys. 2(7), 1–10 (2005)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vitaly Mikheev .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Mikheev, V. (2017). Method of Orbits of Co-Associated Representation in Thermodynamics of the Lie Non-compact Groups. In: Nielsen, F., Barbaresco, F. (eds) Geometric Science of Information. GSI 2017. Lecture Notes in Computer Science(), vol 10589. Springer, Cham. https://doi.org/10.1007/978-3-319-68445-1_50

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-68445-1_50

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-68444-4

  • Online ISBN: 978-3-319-68445-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics