Abstract
The main concepts of general relativistic thermodynamics and general relativistic statistical mechanics are reviewed in a quantum framework. The main building block of the proper relativistic extension of classical thermodynamics laws is the four-temperature vector \(\beta \). The general relativistic thermodynamic equilibrium condition demands \(\beta \) to be a Killing vector field. A remarkable consequence of this condition is that all Lie derivatives of all physical observables along the four-temperature flow vanish.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Becattini, F., Bucciantini, L., Grossi, E., Tinti, L.: Eur. Phys. J. C 75(5), 191 (2015)
Jensen, K., Kaminski, M., Kovtun, P., Meyer, R., Ritz, A., Yarom, A.: Phys. Rev. Lett. 109, 101601 (2012)
De Groot, S.R., Van Leeuwen, W.A., Van Weert, C.G.: Relativistic Kinetic Theory. Principles and Applications, Amsterdam, Netherlands: North-holland (1980)
Barbaresco, F.: Entropy 18, 386 (2016). And references therein
De, G.: Saxcé. Entropy 18, 254 (2016). And references therein
Landau, L., Lifshitz, E.M.: Statistical Phyisics, vol. 1. Butterworth-Heinemann (2013)
Carroll, S.M.: Spacetime and Geometry: An Introduction to General Relativity. Addison-Wesley, San Francisco (2004)
Wald, R.M.: General Relativity. Chicago University Press, Chicago (1984)
Becattini, F.: Acta Phys. Polon. B 47, 1819 (2016)
Acknowledgments
The author would like to express its gratitude to F. Barbaresco and G. De Saxcé for pointing out relevant papers and references.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2017 Springer International Publishing AG
About this paper
Cite this paper
Becattini, F. (2017). Thermodynamic Equilibrium and Relativity: Killing Vectors and Lie Derivatives. In: Nielsen, F., Barbaresco, F. (eds) Geometric Science of Information. GSI 2017. Lecture Notes in Computer Science(), vol 10589. Springer, Cham. https://doi.org/10.1007/978-3-319-68445-1_52
Download citation
DOI: https://doi.org/10.1007/978-3-319-68445-1_52
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-68444-4
Online ISBN: 978-3-319-68445-1
eBook Packages: Computer ScienceComputer Science (R0)