Abstract
We describe a method allowing to deform stochastically the completely integrable (deterministic) system of geodesics on the sphere \(S^2\) in a way preserving all its symmetries.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Dubrovin, B.A., Krichever, J.M., Novikov, S.P.: Integrable systems I. In: Arnold, V.I., Novikov, S.P. (eds.) Dynamical Systems IV. Encyclopaedia of Mathematical Sciences, vol. 4, pp. 177–332. Springer, Heidelberg (1990)
Olver, P.: Applications of Lie Groups to Differential Equations, 2nd edn. Springer, New York (1993)
Itô, K.: The Brownian motion and tensor fields on a Riemannian manifold. In: Proceedings of the International Congress Mathematical (Stockholm), pp. 536–539 (1962)
Fleming, W.H., Soner, H.M.: Controlled Markov Processes and Viscosity Solutions, 2nd edn. Springer, New York (2005)
Malliavin, P.: Stochastic Analysis. Springer, Heidelberg (1997)
Kuwabara, R.: On the symmetry algebra of the Schrödinger wave equation. Math. Japonica 22, 243 (1977)
Léonard, C., Zambrini, J.-C.: Stochastic deformation of Jacobi’s integrability Theorem in Hamiltonian mechanics. Preparation
Zambrini, J.-C.: Probability and quantum symmetries in a riemannian manifold. Prog. Probab. 45 (1999). Birkhäuser
Kolsrud, T.: Quantum and classical conserved quantities: martingales, conservation law and constants of motion. In: Benth, F.E., Di Nunno, G., Lindstrøm, T., Øksendal, B., Zhang, T. (eds.) Stochastic Analysis and Applications: Abel Symposium, pp. 461–491. Springer, Heidelberg (2005)
Zambrini, J.-C.: The research program of Stochastic Deformation (with a view toward Geometric Mechanics). In: Dalang, R., Dozzi, M., Flandoli, F., Russo, F. (eds.) BirkhäuserStochastic Analysis, A Series of Lectures (2015)
Léonard, C.: A survey of the Schrödinger problem and some of its connections with optimal transport. Discrete Contin. Dyn. Syst. A 34(4) (2014)
Léonard, C., Roelly, S., Zambrini, J.-C.: Reciprocal processes. A measure-theoretical point of view. Probab. Surv. 11, 237–269 (2014)
Arnold, V.: Méthodes Mathématiques de la Mécanique Classique. Mir, Moscou (1976)
Villani, C.: Optimal Transport, Old and New. Grundlehren der mathematischen Wissenschaften. Springer, Heidelberg (2009)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2017 Springer International Publishing AG
About this paper
Cite this paper
Arnaudon, M., Zambrini, JC. (2017). A Stochastic Look at Geodesics on the Sphere. In: Nielsen, F., Barbaresco, F. (eds) Geometric Science of Information. GSI 2017. Lecture Notes in Computer Science(), vol 10589. Springer, Cham. https://doi.org/10.1007/978-3-319-68445-1_55
Download citation
DOI: https://doi.org/10.1007/978-3-319-68445-1_55
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-68444-4
Online ISBN: 978-3-319-68445-1
eBook Packages: Computer ScienceComputer Science (R0)