Skip to main content

A Stochastic Look at Geodesics on the Sphere

  • Conference paper
  • First Online:
Geometric Science of Information (GSI 2017)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 10589))

Included in the following conference series:

  • 2393 Accesses

Abstract

We describe a method allowing to deform stochastically the completely integrable (deterministic) system of geodesics on the sphere \(S^2\) in a way preserving all its symmetries.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Dubrovin, B.A., Krichever, J.M., Novikov, S.P.: Integrable systems I. In: Arnold, V.I., Novikov, S.P. (eds.) Dynamical Systems IV. Encyclopaedia of Mathematical Sciences, vol. 4, pp. 177–332. Springer, Heidelberg (1990)

    Chapter  Google Scholar 

  2. Olver, P.: Applications of Lie Groups to Differential Equations, 2nd edn. Springer, New York (1993)

    Book  MATH  Google Scholar 

  3. Itô, K.: The Brownian motion and tensor fields on a Riemannian manifold. In: Proceedings of the International Congress Mathematical (Stockholm), pp. 536–539 (1962)

    Google Scholar 

  4. Fleming, W.H., Soner, H.M.: Controlled Markov Processes and Viscosity Solutions, 2nd edn. Springer, New York (2005)

    MATH  Google Scholar 

  5. Malliavin, P.: Stochastic Analysis. Springer, Heidelberg (1997)

    Book  MATH  Google Scholar 

  6. Kuwabara, R.: On the symmetry algebra of the Schrödinger wave equation. Math. Japonica 22, 243 (1977)

    MATH  MathSciNet  Google Scholar 

  7. Léonard, C., Zambrini, J.-C.: Stochastic deformation of Jacobi’s integrability Theorem in Hamiltonian mechanics. Preparation

    Google Scholar 

  8. Zambrini, J.-C.: Probability and quantum symmetries in a riemannian manifold. Prog. Probab. 45 (1999). Birkhäuser

    Google Scholar 

  9. Kolsrud, T.: Quantum and classical conserved quantities: martingales, conservation law and constants of motion. In: Benth, F.E., Di Nunno, G., Lindstrøm, T., Øksendal, B., Zhang, T. (eds.) Stochastic Analysis and Applications: Abel Symposium, pp. 461–491. Springer, Heidelberg (2005)

    Google Scholar 

  10. Zambrini, J.-C.: The research program of Stochastic Deformation (with a view toward Geometric Mechanics). In: Dalang, R., Dozzi, M., Flandoli, F., Russo, F. (eds.) BirkhäuserStochastic Analysis, A Series of Lectures (2015)

    Google Scholar 

  11. Léonard, C.: A survey of the Schrödinger problem and some of its connections with optimal transport. Discrete Contin. Dyn. Syst. A 34(4) (2014)

    Google Scholar 

  12. Léonard, C., Roelly, S., Zambrini, J.-C.: Reciprocal processes. A measure-theoretical point of view. Probab. Surv. 11, 237–269 (2014)

    Article  MATH  MathSciNet  Google Scholar 

  13. Arnold, V.: Méthodes Mathématiques de la Mécanique Classique. Mir, Moscou (1976)

    Google Scholar 

  14. Villani, C.: Optimal Transport, Old and New. Grundlehren der mathematischen Wissenschaften. Springer, Heidelberg (2009)

    Book  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marc Arnaudon .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Arnaudon, M., Zambrini, JC. (2017). A Stochastic Look at Geodesics on the Sphere. In: Nielsen, F., Barbaresco, F. (eds) Geometric Science of Information. GSI 2017. Lecture Notes in Computer Science(), vol 10589. Springer, Cham. https://doi.org/10.1007/978-3-319-68445-1_55

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-68445-1_55

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-68444-4

  • Online ISBN: 978-3-319-68445-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics