Skip to main content

Noncommutative Geometry and Stochastic Processes

  • Conference paper
  • First Online:
Geometric Science of Information (GSI 2017)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 10589))

Included in the following conference series:

Abstract

The recent analysis on noncommutative geometry, showing quantization of the volume for the Riemannian manifold entering the geometry, can support a view of quantum mechanics as arising by a stochastic process on it. A class of stochastic processes can be devised, arising as fractional powers of an ordinary Wiener process, that reproduce in a proper way a stochastic process on a noncommutative geometry. These processes are characterized by producing complex values and so, the corresponding Fokker–Planck equation resembles the Schrödinger equation. Indeed, by a direct numerical check, one can recover the kernel of the Schrödinger equation starting by an ordinary Brownian motion. This class of stochastic processes needs a Clifford algebra to exist.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Chamseddine, A.H., Connes, A., Mukhanov, V.: Phys. Rev. Lett. 114(9), 091302 (2015). arXiv:1409.2471, [hep-th]

  2. Chamseddine, A.H., Connes, A., Mukhanov, V.: JHEP 1412, 098 (2014). [arXiv:1411.0977 [hep-th]]

    Article  Google Scholar 

  3. Weiss, G.: Aspects and Applications of the Random Walk. North-Holland, Amsterdam (1994)

    MATH  Google Scholar 

  4. Farina, A., Frasca, M., Sedehi, M.: SIViP 8, 27 (2014). doi:10.1007/s11760-013-0473-y

    Article  Google Scholar 

  5. Nelson, E.: Dynamical Theories of Brownian Motion. Princeton University Press, Princeton (1967)

    MATH  Google Scholar 

  6. Guerra, F.: Phys. Rept. 77, 263 (1981)

    Article  Google Scholar 

  7. Grabert, H., Hänggi, P., Talkner, P.: Phys. Rev. A 19, 2440 (1979)

    Article  MathSciNet  Google Scholar 

  8. Skorobogatov, G.A., Svertilov, S.I.: Phys. Rev. A 58, 3426 (1998)

    Article  MathSciNet  Google Scholar 

  9. Blanchard, P., Golin, S., Serva, M.: Phys. Rev. D 34, 3732 (1986)

    Article  MathSciNet  Google Scholar 

  10. Wang, M.S., Liang, W.-K.: Phys. Rev. D 48, 1875 (1993)

    Article  MathSciNet  Google Scholar 

  11. Blanchard, P., Serva, M.: Phys. Rev. D 51, 3132 (1995)

    Article  MathSciNet  Google Scholar 

  12. Frasca, M.: arXiv:1201.5091 [math-ph] (2012). Unpublished

  13. Frasca, M., Farina, A.: SIViP 11, 1365 (2017). doi:10.1007/s11760-017-1094-7

    Article  Google Scholar 

  14. Dimakis, A., Tzanakis, C.: J. Phys. A: Math. Gen. 29, 577 (1996)

    Article  Google Scholar 

  15. Higham, D.J.: SIAM Rev. 43, 525 (2001)

    Article  MathSciNet  Google Scholar 

  16. Øksendal, B.K.: Stochastic Differential Equations: An Introduction with Applications, p. 44. Springer, Berlin (2003)

    Book  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marco Frasca .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Frasca, M. (2017). Noncommutative Geometry and Stochastic Processes. In: Nielsen, F., Barbaresco, F. (eds) Geometric Science of Information. GSI 2017. Lecture Notes in Computer Science(), vol 10589. Springer, Cham. https://doi.org/10.1007/978-3-319-68445-1_57

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-68445-1_57

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-68444-4

  • Online ISBN: 978-3-319-68445-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics