Abstract
The recent analysis on noncommutative geometry, showing quantization of the volume for the Riemannian manifold entering the geometry, can support a view of quantum mechanics as arising by a stochastic process on it. A class of stochastic processes can be devised, arising as fractional powers of an ordinary Wiener process, that reproduce in a proper way a stochastic process on a noncommutative geometry. These processes are characterized by producing complex values and so, the corresponding Fokker–Planck equation resembles the Schrödinger equation. Indeed, by a direct numerical check, one can recover the kernel of the Schrödinger equation starting by an ordinary Brownian motion. This class of stochastic processes needs a Clifford algebra to exist.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Chamseddine, A.H., Connes, A., Mukhanov, V.: Phys. Rev. Lett. 114(9), 091302 (2015). arXiv:1409.2471, [hep-th]
Chamseddine, A.H., Connes, A., Mukhanov, V.: JHEP 1412, 098 (2014). [arXiv:1411.0977 [hep-th]]
Weiss, G.: Aspects and Applications of the Random Walk. North-Holland, Amsterdam (1994)
Farina, A., Frasca, M., Sedehi, M.: SIViP 8, 27 (2014). doi:10.1007/s11760-013-0473-y
Nelson, E.: Dynamical Theories of Brownian Motion. Princeton University Press, Princeton (1967)
Guerra, F.: Phys. Rept. 77, 263 (1981)
Grabert, H., Hänggi, P., Talkner, P.: Phys. Rev. A 19, 2440 (1979)
Skorobogatov, G.A., Svertilov, S.I.: Phys. Rev. A 58, 3426 (1998)
Blanchard, P., Golin, S., Serva, M.: Phys. Rev. D 34, 3732 (1986)
Wang, M.S., Liang, W.-K.: Phys. Rev. D 48, 1875 (1993)
Blanchard, P., Serva, M.: Phys. Rev. D 51, 3132 (1995)
Frasca, M.: arXiv:1201.5091 [math-ph] (2012). Unpublished
Frasca, M., Farina, A.: SIViP 11, 1365 (2017). doi:10.1007/s11760-017-1094-7
Dimakis, A., Tzanakis, C.: J. Phys. A: Math. Gen. 29, 577 (1996)
Higham, D.J.: SIAM Rev. 43, 525 (2001)
Øksendal, B.K.: Stochastic Differential Equations: An Introduction with Applications, p. 44. Springer, Berlin (2003)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2017 Springer International Publishing AG
About this paper
Cite this paper
Frasca, M. (2017). Noncommutative Geometry and Stochastic Processes. In: Nielsen, F., Barbaresco, F. (eds) Geometric Science of Information. GSI 2017. Lecture Notes in Computer Science(), vol 10589. Springer, Cham. https://doi.org/10.1007/978-3-319-68445-1_57
Download citation
DOI: https://doi.org/10.1007/978-3-319-68445-1_57
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-68444-4
Online ISBN: 978-3-319-68445-1
eBook Packages: Computer ScienceComputer Science (R0)