Skip to main content

Log-Determinant Divergences Between Positive Definite Hilbert-Schmidt Operators

  • Conference paper
  • First Online:
Geometric Science of Information (GSI 2017)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 10589))

Included in the following conference series:

  • 2468 Accesses

Abstract

The current work generalizes the author’s previous work on the infinite-dimensional Alpha Log-Determinant (Log-Det) divergences and Alpha-Beta Log-Det divergences, defined on the set of positive definite unitized trace class operators on a Hilbert space, to the entire Hilbert manifold of positive definite unitized Hilbert-Schmidt operators. This generalization is carried out via the introduction of the extended Hilbert-Carleman determinant for unitized Hilbert-Schmidt operators, in addition to the previously introduced extended Fredholm determinant for unitized trace class operators. The resulting parametrized family of Alpha-Beta Log-Det divergences is general and contains many divergences between positive definite unitized Hilbert-Schmidt operators as special cases, including the infinite-dimensional generalizations of the affine-invariant Riemannian distance and symmetric Stein divergence.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Bhatia, R.: Positive Definite Matrices. Princeton University Press, Princeton (2007)

    MATH  Google Scholar 

  2. Chebbi, Z., Moakher, M.: Means of Hermitian positive-definite matrices based on the log-determinant \(\alpha \)-divergence function. Linear Algebra Appl. 436(7), 1872–1889 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  3. Cichocki, A., Cruces, S., Amari, S.: Log-Determinant divergences revisited: Alpha-Beta and Gamma Log-Det divergences. Entropy 17(5), 2988–3034 (2015)

    Article  MATH  MathSciNet  Google Scholar 

  4. Dunford, N., Schwartz, J.T.: Linear Operators, Part 2: Spectral Theory, Self Adjoint Operators in Hilbert Space. Wiley, New York (1988)

    MATH  Google Scholar 

  5. Larotonda, G.: Nonpositive curvature: a geometrical approach to Hilbert-Schmidt operators. Differ. Geom. Appl. 25, 679–700 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  6. Lawson, J.D., Lim, Y.: The geometric mean, matrices, metrics, and more. Am. Math. Monthly 108(9), 797–812 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  7. Minh, H.Q.: Infinite-dimensional Log-Determinant divergences II: Alpha-Beta divergences. arXiv preprint arXiv:1610.08087v2 (2016)

  8. Minh, H.Q.: Infinite-dimensional Log-Determinant divergences between positive definite Hilbert-Schmidt operators. arXiv preprint arXiv:1702.03425 (2017)

  9. Minh, H.Q.: Infinite-dimensional Log-Determinant divergences between positive definite trace class operators. Linear Algebra Appl. 528, 331–383 (2017)

    Article  MathSciNet  Google Scholar 

  10. Mostow, G.D.: Some new decomposition theorems for semi-simple groups. Mem. Am. Math. Soc. 14, 31–54 (1955)

    MATH  MathSciNet  Google Scholar 

  11. Pennec, X., Fillard, P., Ayache, N.: A Riemannian framework for tensor computing. Int. J. Comput. Vision 66(1), 41–66 (2006)

    Article  MATH  Google Scholar 

  12. Simon, B.: Notes on infinite determinants of Hilbert space operators. Adv. Math. 24, 244–273 (1977)

    Article  MATH  MathSciNet  Google Scholar 

  13. Sra, S.: A new metric on the manifold of kernel matrices with application to matrix geometric means. In: Advances in Neural Information Processing Systems (NIPS), pp. 144–152 (2012)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hà Quang Minh .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Minh, H.Q. (2017). Log-Determinant Divergences Between Positive Definite Hilbert-Schmidt Operators. In: Nielsen, F., Barbaresco, F. (eds) Geometric Science of Information. GSI 2017. Lecture Notes in Computer Science(), vol 10589. Springer, Cham. https://doi.org/10.1007/978-3-319-68445-1_59

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-68445-1_59

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-68444-4

  • Online ISBN: 978-3-319-68445-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics