Abstract
Ordinary Bregman divergences (distances) OBD are widely used in statistics, machine learning, and information theory (see e.g. [5, 18]; [4, 6, 7, 14,15,16, 22, 23, 25]). They can be flexibilized in various different ways. For instance, there are the Scaled Bregman divergences SBD of Stummer [20] and Stummer and Vajda [21] which contain both the OBDs as well the Csiszar-Ali-Silvey \(\phi -\)divergences as special cases. On the other hand, the OBDs are subsumed by the Total Bregman divergences of Liu et al. [12, 13], Vemuri et al. [24] and the more general Conformal Divergences COD of Nock et al. [17]. The latter authors also indicated the possibility to combine the concepts of SBD and COD, under the name “Conformal Scaled Bregman divergences” CSBD. In this paper, we introduce some new divergences between (non-)probability distributions which particularly cover the corresponding OBD, SBD, COD and CSBD (for separable situations) as special cases. Non-convex generators are employed, too. Moreover, for the case of i.i.d. sampling we derive the asymptotics of a useful new-divergence-based test statistics.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
our concept can be analogously worked out for non-probability distributions (nonnegative measures) P, Q.
- 2.
sigma-finite.
- 3.
in (2), we can also extend \([ \ldots ]\) to \(G([ \ldots ])\) for some nonnegative scalar function G satisfying \(G(z) = 0\) iff \(z=0\).
- 4.
(with respect to the one-dim. Lebesgue measure).
References
Amari, S.-I.: Information Geometry and Its Applications. Springer, Tokyo (2016)
Amari, S.-I., Nagaoka, H.: Methods of Information Geometry. Oxford University Press, Oxford (2000)
Ali, M.S., Silvey, D.: A general class of coefficients of divergence of one distribution from another. J. Roy. Statist. Soc. B–28, 131–140 (1966)
Banerjee, A., Merugu, S., Dhillon, I.S., Ghosh, J.: Clustering with Bregman divergences. J. Mach. Learn. Res. 6, 1705–1749 (2005)
Basu, A., Shioya, H., Park, C.: Statistical Inference: The Minimum Distance Approach. CRC Press, Boca Raton (2011)
Cesa-Bianchi, N., Lugosi, G.: Prediction, Learning and Games. Cambridge University Press, Cambridge (2006)
Collins, M., Schapire, R.E., Singer, Y.: Logistic regression, AdaBoost and Bregman distances. Mach. Learn. 48, 253–285 (2002)
Csiszar, I.: Eine informationstheoretische Ungleichung und ihre Anwendung auf den Beweis der Ergodizität von Markoffschen Ketten. Publ. Math. Inst. Hungar. Acad. Sci. A–8, 85–108 (1963)
Kißlinger, A.-L., Stummer, W.: Some decision procedures based on scaled Bregman distance surfaces. In: Nielsen, F., Barbaresco, F. (eds.) GSI 2013. LNCS, vol. 8085, pp. 479–486. Springer, Heidelberg (2013). doi:10.1007/978-3-642-40020-9_52
Kißlinger, A.-L., Stummer, W.: New model search for nonlinear recursive models, regressions and autoregressions. In: Nielsen, F., Barbaresco, F. (eds.) GSI 2015. LNCS, vol. 9389, pp. 693–701. Springer, Cham (2015). doi:10.1007/978-3-319-25040-3_74
Kißlinger, A.-L., Stummer, W.: Robust statistical engineering by means of scaled Bregman distances. In: Agostinelli, C., Basu, A., Filzmoser, P., Mukherjee, D. (eds.) Recent Advances in Robust Statistics: Theory and Applications, pp. 81–113. Springer, New Delhi (2016). doi:10.1007/978-81-322-3643-6_5
Liu, M., Vemuri, B.C., Amari, S.-I., Nielsen, F.: Total Bregman divergence and its applications to shape retrieval. In: Proceedings 23rd IEEE CVPR, pp. 3463–3468 (2010)
Liu, M., Vemuri, B.C., Amari, S.-I., Nielsen, F.: Shape retrieval using hierarchical total Bregman soft clustering. IEEE Trans. Pattern Anal. Mach. Intell. 34(12), 2407–2419 (2012)
Murata, N., Takenouchi, T., Kanamori, T., Eguchi, S.: Information geometry of U-boost and Bregman divergence. Neural Comput. 16(7), 1437–1481 (2004)
Nock, R., Menon, A.K., Ong, C.S.: A scaled Bregman theorem with applications. In: Advances in Neural Information Processing Systems 29 (NIPS 2016), pp. 19–27 (2016)
Nock, R., Nielsen, F.: Bregman divergences and surrogates for learning. IEEE Trans. Pattern Anal. Mach. Intell. 31(11), 2048–2059 (2009)
Nock, R., Nielsen, F., Amari, S.-I.: On conformal divergences and their population minimizers. IEEE Trans. Inf. Theory 62(1), 527–538 (2016)
Pardo, M.C., Vajda, I.: On asymptotic properties of information-theoretic divergences. IEEE Trans. Inf. Theory 49(7), 1860–1868 (2003)
Pallaschke, D., Rolewicz, S.: Foundations of Mathematical Optimization. Kluwer Academic Publishers, Dordrecht (1997)
Stummer, W.: Some Bregman distances between financial diffusion processes. Proc. Appl. Math. Mech. 7(1), 1050503–1050504 (2007)
Stummer, W., Vajda, I.: On Bregman distances and divergences of probability measures. IEEE Trans. Inf. Theory 58(3), 1277–1288 (2012)
Sugiyama, M., Suzuki, T., Kanamori, T.: Density-ratio matching under the Bregman divergence: a unified framework of density-ratio estimation. Ann. Inst. Stat. Math. 64, 1009–1044 (2012)
Tsuda, K., Rätsch, G., Warmuth, M.: Matrix exponentiated gradient updates for on-line learning and Bregman projection. J. Mach. Learn. Res. 6, 995–1018 (2005)
Vemuri, B.C., Liu, M., Amari, S.-I., Nielsen, F.: Total Bregman divergence and its applications to DTI analysis. IEEE Trans. Med. Imag. 30(2), 475–483 (2011)
Wu, L., Hoi, S.C.H., Jin, R., Zhu, J., Yu, N.: Learning Bregman distance functions for semi-supervised clustering. IEEE Trans. Knowl. Data Eng. 24(3), 478–491 (2012)
Acknowledgement
We are grateful to 3 referees for their useful suggestions.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2017 Springer International Publishing AG
About this paper
Cite this paper
Stummer, W., Kißlinger, AL. (2017). Some New Flexibilizations of Bregman Divergences and Their Asymptotics. In: Nielsen, F., Barbaresco, F. (eds) Geometric Science of Information. GSI 2017. Lecture Notes in Computer Science(), vol 10589. Springer, Cham. https://doi.org/10.1007/978-3-319-68445-1_60
Download citation
DOI: https://doi.org/10.1007/978-3-319-68445-1_60
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-68444-4
Online ISBN: 978-3-319-68445-1
eBook Packages: Computer ScienceComputer Science (R0)