Skip to main content

Translations in the Exponential Orlicz Space with Gaussian Weight

  • Conference paper
  • First Online:
Geometric Science of Information (GSI 2017)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 10589))

Included in the following conference series:

  • 2389 Accesses

Abstract

We study the continuity of space translations on non-parametric exponential families based on the exponential Orlicz space with Gaussian reference density.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Brigo, D., Hanzon, B., Le Gland, F.: Approximate nonlinear filtering by projection on exponential manifolds of densities. Bernoulli 5(3), 495–534 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  2. Brigo, D., Pistone, G.: Dimensionality reduction for measure valued evolution equations in statistical manifolds. In: Nielsen, F., Critchley, F., Dodson, C.T.J. (eds.) Computational Information Geometry. SCT, pp. 217–265. Springer, Cham (2017). doi:10.1007/978-3-319-47058-0_10

    Chapter  Google Scholar 

  3. Dellacherie, C., Meyer, P.A.: Probabilités et potentiel. Chapitres I à IV. Hermann, Paris (1975). Édition entièrment refondue

    MATH  Google Scholar 

  4. Hyvärinen, A.: Estimation of non-normalized statistical models by score matching. J. Mach. Learn. Res. 6, 695–709 (2005)

    MATH  MathSciNet  Google Scholar 

  5. Lods, B., Pistone, G.: Information geometry formalism for the spatially homogeneous Boltzmann equation. Entropy 17(6), 4323–4363 (2015)

    Article  MATH  MathSciNet  Google Scholar 

  6. Musielak, J.: Orlicz Spaces and Modular Spaces. LNM, vol. 1034. Springer, Heidelberg (1983)

    MATH  Google Scholar 

  7. Pistone, G.: Nonparametric information geometry. In: Nielsen, F., Barbaresco, F. (eds.) GSI 2013. LNCS, vol. 8085, pp. 5–36. Springer, Heidelberg (2013). doi:10.1007/978-3-642-40020-9_3

    Chapter  Google Scholar 

  8. Pistone, G., Sempi, C.: An infinite-dimensional geometric structure on the space of all the probability measures equivalent to a given one. Ann. Statist. 23(5), 1543–1561 (1995)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Acknowledgments

The author thanks Bertrand Lods (Università di Torino and Collegio Carlo Alberto, Moncalieri) for his comments and acknowledges the support of de Castro Statistics and Collegio Carlo Alberto, Moncalieri. He is a member of GNAMPA-INDAM.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Giovanni Pistone .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Pistone, G. (2017). Translations in the Exponential Orlicz Space with Gaussian Weight. In: Nielsen, F., Barbaresco, F. (eds) Geometric Science of Information. GSI 2017. Lecture Notes in Computer Science(), vol 10589. Springer, Cham. https://doi.org/10.1007/978-3-319-68445-1_66

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-68445-1_66

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-68444-4

  • Online ISBN: 978-3-319-68445-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics