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Abstract. We introduce a family of orders on the set S+
n of positive-

definite matrices of dimension n derived from the homogeneous geometry
of S+

n induced by the natural transitive action of the general linear group
GL(n). The orders are induced by affine-invariant cone fields, which arise
naturally from a local analysis of the orders that are compatible with the
homogeneous structure of S+

n . We then revisit the well-known Löwner-
Heinz theorem and provide an extension of this classical result derived
using differential positivity with respect to affine-invariant cone fields.

1 Introduction

The question of how one can order the elements of a space in a consistent and
well-defined manner is of fundamental importance to many areas of applied
mathematics, including the theory of monotone functions and matrix means in
which the notion of order plays a defining role [9, 6, 1, 8] . These concepts play
an important role in a wide variety of applications across information geometry
where one is interested in performing statistical analysis on sets of matrices. In
such applications, the choice of order relation is often taken for granted. This
choice, however, is of crucial significance since a function that is not monotone
with respect to one order, may be monotone with respect to another, in which
case powerful results from monotonicity theory would become relevant.

In this paper, we outline an approach to systematically generate orders on
homogeneous spaces, which form a class of nonlinear spaces that are ubiquitous
in many applications in information engineering and control theory. A homoge-
neous space is a manifold on which a Lie group acts transitively, in the sense
that any point on the manifold can be mapped onto any other point by an el-
ement of a group of transformations that act on the space. The geometry of
homogeneous spaces, coupled with the observation that cone fields induce conal
orders on continuous spaces [7], forms the basis for the approach taken in this
paper. The aim is to systematically generate cone fields that are invariant with
respect to the homogeneous geometry, thereby defining families of conal orders
built upon the underlying symmetries of the space.

The focus of this paper is on ordering the elements of the set of symmetric
positive-definite matrices S+

n of dimension n. Positive definite matrices arise in



numerous applications, including as covariance matrices in statistics and com-
puter vision, as variables in convex and semidefinite programming, as unknowns
in fundamental problems in systems and control theory, as kernels in machine
learning, and as diffusion tensors in medical imaging. The space S+

n forms a
smooth manifold that can be viewed as a homogeneous space admitting a tran-
sitive action by the general linear group GL(n), which endows the space with an
affine-invariant geometry as reviewed in Section 2. In Section 3, this geometry
is used to construct affine-invariant cone fields and new partial orders on S+

n .
In Section 4, we discuss how differential positivity [5] can be used to study and
characterize monotonicity on S+

n with respect to the invariant orders introduced
in this paper. We also state a generalized version of the celebrated Löwner-Heinz
theorem [9, 6] of operator monotonicity theory derived using this approach.

2 Homogeneous geometry of S+
n

The set S+
n of symmetric positive definite matrices of dimension n has the struc-

ture of a homogeneous space with a transitive GL(n)-action. This follows by
noting that any Σ ∈ S+

n admits a Cholesky decomposition Σ = AAT for some
A ∈ GL(n). The Cauchy polar decomposition of the invertible matrix A yields
a unique decomposition A = PQ of A into an orthogonal matrix Q ∈ O(n) and
a symmetric positive-definite matrix P ∈ Sn+. Now note that if Σ has Cholesky
decomposition Σ = AAT and A has a Cauchy polar decomposition A = PQ,
then Σ = PQQTP = P 2. That is, Σ is invariant with respect to the orthogonal
part Q of the polar decomposition. Therefore, we can identify any Σ ∈ S+

n with
the equivalence class [Σ1/2] = Σ1/2 · O(n) in the quotient space GL(n)/O(n),
where Σ1/2 denotes the unique positive definite square root of Σ. That is,

S+
n
∼= GL(n)/O(n). (1)

The identification in (1) can also be made by noting the transitive action of
GL(n) on S+

n defined by

τA : Σ 7→ AΣAT ∀A ∈ GL(n), ∀Σ ∈ S+
n . (2)

This action is said to be almost effective in the sense that ±I are the only
elements of GL(n) that fix every Σ ∈ S+

n . The isotropy group of this action at
Σ = I is precisely O(n), since τQ : I 7→ QIQT = I if and only if Q ∈ O(n).
Once again, if Σ ∈ S+

n has Cholesky decomposition Σ = AAT and A has polar
decomposition A = PQ, then τA(I) = AIAT = P 2 = Σ.

A homogeneous space G/H is said to be reductive if there exists a subspace
m of g such that g = h ⊕ m and Ad(H)m ⊆ m. Recall that the Lie algebra
gl(n) of GL(n) consists of the set Rn×n of all real n × n matrices equipped
with the Lie bracket [X,Y ] = XY − Y X, while the Lie algebra of O(n) is
o(n) = {X ∈ Rn×n : XT = −X}. Since any matrix X ∈ Rn×n has a unique
decomposition X = 1

2 (X−XT )+ 1
2 (X+XT ), as a sum of an antisymmetric part

and a symmetric part, we have gl(n) = o ⊕ m, where m = {X ∈ Rn×n : XT =



X}. Furthermore, since AdQ(S) = QSQ−1 = QSQT is a symmetric matrix for
each S ∈ m, we have AdO(n) = {QSQ−1 : Q ∈ O(n), S ∈ m} ⊆ m. Hence,
S+
n = GL(n)/O(n) is indeed a reductive homogeneous space with reductive

decomposition gl(n) = o(n)⊕m.
The tangent space ToS

+
n of S+

n at the base-point o = [I] = I ·O(n) is identified
with m. For each Σ ∈ S+

n , the action τΣ1/2 : S+
n → S+

n induces the vector space
isomorphism dτΣ1/2 |I : TIS

+
n → TΣS

+
n given by

dτΣ1/2

∣∣
I
X = Σ1/2XΣ1/2, ∀X ∈ m. (3)

The map (3) can be used to extend structures defined in ToS
+
n to structures

defined on the tangent bundle TS+
n through affine-invariance, provided that the

structures in ToS
+
n are AdO(n)-invariant. The AdO(n)-invariance is required to

ensure that the extension to TS+
n is unique and thus well-defined. For instance,

any homogeneous Riemannian metric on S+
n
∼= GL(n)/O(n) is determined by an

AdO(n)-invariant inner product on m. Any such inner product induces a norm
that is rotationally invariant and so can only depend on the scalar invariants
tr(Xk) where k ≥ 1 and X ∈ m. Moreover, as the inner product is a quadratic
function, ‖X‖2 must be a linear combination of (tr(X))2 and tr(X2). Thus, any
AdO(n)-invariant inner product on m must be a scalar multiple of

〈X,Y 〉m = tr(XY ) + µ tr(X) tr(Y ), (4)

where µ is a scalar parameter with µ > −1/n to ensure positive-definiteness [12].
Therefore, the corresponding affine-invariant Riemannian metrics are generated
by (3) and given by

〈X,Y 〉Σ = 〈Σ−1/2XΣ−1/2, Σ−1/2Y Σ−1/2〉m
= tr(Σ−1XΣ−1Y ) + µ tr(Σ−1X) tr(Σ−1Y ), (5)

for Σ ∈ S+
n and X,Y ∈ TΣS+

n . In the case µ = 0, (5) yields the most commonly
used ‘natural’ Riemannian metric on S+

n , which corresponds to the Fisher in-
formation metric for the multivariate normal distribution [4, 13], and has been
widely used in applications such as tensor computing in medical imaging.

3 Affine-invariant orders

3.1 Affine-invariant cone fields

A cone field K on S+
n smoothly assigns a cone K(Σ) ⊂ TΣS

+
n to each point

Σ ∈ S+
n . We say that K is affine-invariant or homogeneous with respect to the

quotient geometry S+
n
∼= GL(n)/O(n) if
(
dτ
Σ

1/2
2 Σ

−1/2
1

∣∣
Σ1

)
K(Σ1) = K(Σ2), (6)

for all Σ1, Σ2 ∈ S+
n . The procedure we will use for constructing affine-invariant

cone fields on S+
n is similar to the approach taken for generating the affine-

invariant Riemannian metrics in Section 2. We begin by defining a cone K(I) at



I that is AdO(n)-invariant:

X ∈ K(I)⇔ AdQX = dτQX = QXQT ∈ K(I), ∀Q ∈ O(n). (7)

Using such a cone, we generate a cone field via

K(Σ) = dτΣ1/2

∣∣
I
K(I) = {X ∈ TΣS+

n : Σ−1/2XΣ−1/2 ∈ K(I)}. (8)

The AdO(n)-invariance condition (7) is satisfied if K(I) has a spectral characteri-
zation; that is, we can check to see if any given X ∈ TIS+

n
∼= m lies in K(I) using

only properties of X that are characterized by its spectrum. For instance, tr(X)
and tr(X2) are both properties of X that are spectrally characterized and indeed
AdO(n)-invariant. Furthermore, quadratic AdO(n)-invariant cones are defined by
inequalities on suitable linear combinations of (tr(X))2 and tr(X2).

Proposition 1 For any choice of parameter µ ∈ (0, n), the set

K(I) = {X ∈ TIS+
n : (tr(X))2 − µ tr(X2) ≥ 0, tr(X) ≥ 0}, (9)

defines an AdO(n)-invariant cone in TIS
+
n = {X ∈ Rn×n : XT = X}.

Proof. AdO(n)-invariance is clear since tr(X2) = tr(QXQTQXQT ) and tr(X) =
tr(QXQT ) for all Q ∈ O(n). To prove that (9) is a cone, first note that 0 ∈ K(I)
and for λ > 0, X ∈ K(I), we have λX ∈ K(I) since tr(λX) = λ tr(X) ≥ 0 and

(tr(λX))2 − µ tr((λX)2) = λ2[(tr(X))2 − µ tr(X2)] ≥ 0. (10)

To show convexity, let X1, X2 ∈ K(I). Now tr(X1 +X2) = tr(X1) + tr(X2) ≥ 0,
and

(tr(X1 +X2))2 − µ tr((X1 +X2)2) = [(tr(X1))2 − µ tr(X2
1 )]

+ [(tr(X2))2 − µ tr(X2
2 )] + 2[tr(X1) tr(X2)− µ tr(X1X2)] ≥ 0, (11)

since tr(X1X2) ≤ (tr(X2
1 ))

1
2 (tr(X2

2 ))
1
2 ≤ 1√

µ tr(X1) 1√
µ tr(X2), where the first

inequality follows by Cauchy-Schwarz. Finally, we need to show that K(I) is
pointed. If X ∈ K(I) and −X ∈ K(I), then tr(−X) = − tr(X) = 0. Thus,
(tr(X))2 − µ tr(X2) = −µ tr(X2) ≥ 0, which is possible if and only if all of the
eigenvalues of X are zero; i.e., if and only if X = 0. ut
The parameter µ controls the opening angle of the cone. If µ = 0, then (9)
defines the half-space tr(X) ≥ 0. As µ increases, the opening angle of the cone
becomes smaller and for µ = n (9) collapses to a ray. For any fixed µ ∈ (0, n),
we obtain a unique well-defined affine-invariant cone field given by

K(Σ) = {X ∈ TΣS+
n : (tr(Σ−1X))2 − µ tr(Σ−1XΣ−1X) ≥ 0, tr(Σ−1X) ≥ 0}.

(12)
It should be noted that of course not all AdO(n)-invariant cones at I are

quadratic. Indeed, it is possible to construct polyhedral AdO(n)-invariant cones
that arise as the intersections of a collection of spectrally defined half-spaces
in TIS

+
n . The clearest example of such a construction is the cone of positive-

semidefinite matrices in TIS
+
n , which of course itself has a spectral characteri-

zation K(I) = {X ∈ TIS+
n : λi(X) ≥ 0, i = 1, . . . , n}, where (λi(X)) denote the

n real eigenvalues of the symmetric matrix X.



3.2 Visualization of affine-invariant cone fields on S+
2

It is well-known that the set of positive semi-definite matrices of dimension n
forms a cone in the space of symmetric n× n matrices. Moreover, S+

n forms the
interior of this cone. A concrete visualization of this identification can be made
in the n = 2 case, as shown in Figure 1. The set S+

2 can be identified with the
interior of K = {(x, y, z) ∈ R3 : z2 − x2 − y2 ≥ 0, z ≥ 0}, through the map
φ : S+

2 → K given by

φ :

(
a b
b c

)
7→ (x, y, z) =

(√
2b,

1√
2

(a− c), 1√
2

(a+ c)

)
. (13)

x

y

z
z2 − x2 − y2 ≥ 0z ≥ 0

φ : S+
2 → K = {(x, y, z) ∈ R3 : z2 − x2 − y2 ≥ 0, z ≥ 0}

S+
2 =

{(
a b
b c

)
: ac− b2 > 0, a+ c > 0

}

Fig. 1. Identification of S+
2 with the interior of the closed, convex, pointed cone K =

{(x, y, z) ∈ R3 : z2 − x2 − y2 ≥ 0, z ≥ 0} in R3.

Inverting φ, we find that a = 1√
2
(z+y), b = 1√

2
x, c = 1√

2
(z−y). Note that the

point (x, y, z) = (0, 0,
√

2) corresponds to the identity matrix I ∈ S+
2 . We seek

to arrive at a visual representation of the affine-invariant cone fields generated
from the AdO(n)-invariant cones (9) for different choices of the parameter µ. The

defining inequalities tr(X) ≥ 0 and (tr(X))2 − µ tr(X2) ≥ 0 in TIS
+
2 take the

forms

δz ≥ 0, and

(
2

µ
− 1

)
δz2 − δx2 − δy2 ≥ 0, (14)

respectively, where (δx, δy, δz) ∈ T(0,0,
√
2)K

∼= TIS
+
2 . Clearly the translation-

invariant cone fields generated from this cone are given by the same equations
as in (14) for (δx, δy, δz) ∈ T(x,y,z)K ∼= Tφ−1(x,y,z)S

+
2 .

To obtain the affine-invariant cone fields, note that at Σ = φ−1(x, y, z) ∈ S+
2 ,

the inequality tr(Σ−1X) ≥ 0 takes the form

tr

[(
c −b
−b a

)(
δa δb
δb δc

)]
= c δa− 2b δb+ a δc ≥ 0 (15)

⇔ z δz − x δx− y δy ≥ 0. (16)

Similarly, the inequality (tr(Σ−1X))2 − µ tr(Σ−1XΣ−1X) ≥ 0 is given by

2(x δx+ y δy − z δz)2−µ
[
(z2 + x2 − y2)δx2 + (z2 − x2 − y2)δy2

+ (x2 + y2 + z2)δz2 + 4xy δxδy − 4xz δxδz − 4yz δyδz] ≥ 0, (17)



where (δx, δy, δz) ∈ T(x,y,z)K ∼= TΣS
+
2 . In the case µ = 1, this reduces to

( 2
µ − 1)δz2− δx2− δy2 ≥ 0. That is, for µ = 1 the quadratic cone field generated

by affine-invariance coincides with the corresponding translation-invariant cone
field. Generally, however, affine-invariant and translation-invariant cone fields do
not agree, as depicted in Figure 2. Each of the different cone fields in Figure 2
induces a distinct partial order on S+

n .

µ > 1 µ = 1 µ < 1

(a)

(b)

Fig. 2. Cone fields on S+
2 : (a) Quadratic affine-invariant cone fields for different choices

of the parameter µ ∈ (0, 2). (b) The corresponding translation-invariant cone fields.

3.3 The Löwner order

The Löwner order is the partial order ≥L on S+
n defined by

A ≥L B ⇔ A−B ≥L O, (18)

where the inequality on the right denotes that A−B is positive semi-definite [2].
The definition in (18) is based on translations and the ‘flat’ geometry of S+

n . It
is clear that the Löwner order is translation invariant in the sense that A ≥L B
implies that A+C ≥L B+C for all A,B,C ∈ S+

n . From the perspective of conal
orders, the Löwner order is the partial order induced by the cone field generated
by translations of the cone of positive semi-definite matrices at TIS

+
n .

In the previous section, we gave an explicit construction showing that the
cone field generated through translations of the cone of positive semi-definite ma-
trices at TIS

+
n coincides with the cone field generated through affine-invariance

in the n = 2 case. We will now show that this is a general result which holds for
all n. First note that the cone at TIS

+
n can be expressed as

K(I) = {X ∈ TIS+
n : uTXu ≥ 0 ∀u ∈ Rn, uTXu = 0⇒ u = 0}, (19)

and the resulting translation-invariant cone field is simply given by

KT (Σ) = {X ∈ TΣS+
n : uTXu ≥ 0 ∀u ∈ Rn, uTXu = 0⇒ u = 0}. (20)



The corresponding affine-invariant cone field is given by

KA(Σ) = {X ∈ TΣS+
n : uTΣ−1/2XΣ−1/2u ≥ 0 ∀u ∈ Rn,

uTΣ−1/2XΣ−1/2u = 0⇒ u = 0}, (21)

which is seen to be equal to KT by introducing the invertible transformation
ū = Σ−1/2u in (21). Thus we see that the Löwner order enjoys the special status
of being both affine-invariant and translation-invariant, even though its classical
definition is based on the ‘flat’ or translational geometry on S+

n .

4 Monotonicity on S+
n

Let f be a map of S+
n into itself. We say that f is monotone with respect to a

partial order ≥ on S+
n if f(Σ1) ≥ f(Σ2) whenever Σ1 ≥ Σ2. Such functions were

introduced by Löwner in his seminal paper [9] on operator monotone functions.
Since then operator monotone functions have been studied extensively and found
applications to many fields including electrical engineering, network theory, and
quantum information theory [3, 10]. One of the most fundamental results in
operator theory is the Löwner-Heinz theorem [9, 6] stated below.

Theorem 1 (Löwner-Heinz) If Σ1 ≥L Σ2 in S+
n and r ∈ [0, 1], then

Σr
1 ≥L Σr

2 . (22)

Furthermore, if n ≥ 2 and r > 1, then Σ1 ≥L Σ2 6⇒ Σr
1 ≥L Σr

2 .

There are several different proofs of the Löwner-Heinz theorem. See [2, 11,
9, 6], for instance. Most of these proofs are based on analytic methods, such as
integral representations from complex analysis. Instead we employ a geometric
approach to study monotonicity based on a differential analysis of the system.
One of the advantages of such an approach is that it is immediately applicable
to all of the conal orders considered in this paper, while providing a deeper
geometric insight into the behavior of the map under consideration. Recall that
a smooth map f : S+

n → S+
n is said to be differentially positive with respect to

a cone field K on S+
n if

δΣ ∈ K(Σ) ⇒ df |Σ(δΣ) ∈ K(f(Σ)), (23)

where df |Σ : TΣS
+
n → Tf(Σ)S

+
n denotes the differential of f at Σ. Assuming

that ≥K is a partial order induced by K, then f is monotone with respect to ≥K
if and only if it is differentially positive with respect to K. Applying this to the
family of affine-invariant cone fields in (12), we arrive at the following extension
to the Löwner-Heinz theorem.

Theorem 2 (Generalized Löwner-Heinz) For any of the quadratic affine-
invariant orders (12) parameterized by µ, and r ∈ [0, 1], the map f(Σ) = Σr is
monotone on S+

n .



This result suggests that the monotonicity of the map f : Σ 7→ Σr for r ∈ (0, 1)
is intimately connected to the affine-invariant geometry of S+

n and not its trans-
lational geometry. The proof of Theorem 2 has been omitted from this abstract
due to length limitations. A more detailed treatment of the topics discussed here,
alongside new results and a proof of Theorem 2 will be provided in a subsequent
journal paper.

5 Conclusion

The choice of partial order is a key part of studying monotonicity of functions
that is often taken for granted. Invariant cone fields provide a geometric approach
to systematically construct ‘natural’ orders by connecting the geometry of the
state space to the search for orders. Coupled with differential positivity, invariant
cone fields provide an insightful and powerful method for studying monotonicity,
as shown in the case of S+

n .
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