Skip to main content

Affine-Invariant Orders on the Set of Positive-Definite Matrices

  • Conference paper
  • First Online:
Geometric Science of Information (GSI 2017)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 10589))

Included in the following conference series:

Abstract

We introduce a family of orders on the set \(S^+_n\) of positive-definite matrices of dimension n derived from the homogeneous geometry of \(S^+_n\) induced by the natural transitive action of the general linear group GL(n). The orders are induced by affine-invariant cone fields, which arise naturally from a local analysis of the orders that are compatible with the homogeneous structure of \(S^+_n\). We then revisit the well-known Löwner-Heinz theorem and provide an extension of this classical result derived using differential positivity with respect to affine-invariant cone fields.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Ando, T.: Concavity of certain maps on positive definite matrices and applications to hadamard products. Linear Algebra Appl. 26, 203–241 (1979)

    Article  MATH  MathSciNet  Google Scholar 

  2. Bhatia, R.: Positive Definite Matrices. Princeton University Press, Princeton (2007)

    MATH  Google Scholar 

  3. Bhatia, R.: Matrix Analysis, vol. 169. Springer, New York (2013)

    MATH  Google Scholar 

  4. Burbea, J., Rao, C.: Entropy differential metric, distance and divergence measures in probability spaces: A unified approach. J. Multivar. Anal. 12(4), 575–596 (1982)

    Article  MATH  MathSciNet  Google Scholar 

  5. Forni, F., Sepulchre, R.: Differentially positive systems. IEEE Trans. Autom. Control 61(2), 346–359 (2016)

    MATH  MathSciNet  Google Scholar 

  6. Heinz, E.: Beiträge zur störungstheorie der spektralzerlegung. Math. Ann. 123, 415–438 (1951)

    Article  MATH  MathSciNet  Google Scholar 

  7. Hilgert, J., Hofmann, K.H., Lawson, J.: Lie Groups, Convex Cones, and Semi-groups. Oxford University Press, Oxford (1989)

    MATH  Google Scholar 

  8. Kubo, F., Ando, T.: Means of positive linear operators. Math. Ann. 246, 205–224 (1979)

    Article  MATH  MathSciNet  Google Scholar 

  9. Löwner, K.: Über monotone matrixfunktionen. Math. Z. 38, 177–216 (1934)

    Article  MATH  MathSciNet  Google Scholar 

  10. Nielsen, M.A., Chuang, I.: Quantum computation and quantum information. Am. J. Phys. 70, 558 (2002)

    Article  Google Scholar 

  11. Pedersen, G.K.: Some operator monotone functions. Proc. Am. Math. Soc. 36(1), 309–310 (1972)

    MATH  MathSciNet  Google Scholar 

  12. Pennec, X.: Statistical computing on manifolds for computational anatomy. Ph.D. thesis, Université Nice Sophia Antipolis (2006)

    Google Scholar 

  13. Skovgaard, L.T.: A Riemannian geometry of the multivariate normal model. Scand. J. Stat. 11(4), 211–223 (1984)

    MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cyrus Mostajeran .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Mostajeran, C., Sepulchre, R. (2017). Affine-Invariant Orders on the Set of Positive-Definite Matrices. In: Nielsen, F., Barbaresco, F. (eds) Geometric Science of Information. GSI 2017. Lecture Notes in Computer Science(), vol 10589. Springer, Cham. https://doi.org/10.1007/978-3-319-68445-1_71

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-68445-1_71

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-68444-4

  • Online ISBN: 978-3-319-68445-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics