Abstract
We introduce a family of orders on the set \(S^+_n\) of positive-definite matrices of dimension n derived from the homogeneous geometry of \(S^+_n\) induced by the natural transitive action of the general linear group GL(n). The orders are induced by affine-invariant cone fields, which arise naturally from a local analysis of the orders that are compatible with the homogeneous structure of \(S^+_n\). We then revisit the well-known Löwner-Heinz theorem and provide an extension of this classical result derived using differential positivity with respect to affine-invariant cone fields.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Ando, T.: Concavity of certain maps on positive definite matrices and applications to hadamard products. Linear Algebra Appl. 26, 203–241 (1979)
Bhatia, R.: Positive Definite Matrices. Princeton University Press, Princeton (2007)
Bhatia, R.: Matrix Analysis, vol. 169. Springer, New York (2013)
Burbea, J., Rao, C.: Entropy differential metric, distance and divergence measures in probability spaces: A unified approach. J. Multivar. Anal. 12(4), 575–596 (1982)
Forni, F., Sepulchre, R.: Differentially positive systems. IEEE Trans. Autom. Control 61(2), 346–359 (2016)
Heinz, E.: Beiträge zur störungstheorie der spektralzerlegung. Math. Ann. 123, 415–438 (1951)
Hilgert, J., Hofmann, K.H., Lawson, J.: Lie Groups, Convex Cones, and Semi-groups. Oxford University Press, Oxford (1989)
Kubo, F., Ando, T.: Means of positive linear operators. Math. Ann. 246, 205–224 (1979)
Löwner, K.: Über monotone matrixfunktionen. Math. Z. 38, 177–216 (1934)
Nielsen, M.A., Chuang, I.: Quantum computation and quantum information. Am. J. Phys. 70, 558 (2002)
Pedersen, G.K.: Some operator monotone functions. Proc. Am. Math. Soc. 36(1), 309–310 (1972)
Pennec, X.: Statistical computing on manifolds for computational anatomy. Ph.D. thesis, Université Nice Sophia Antipolis (2006)
Skovgaard, L.T.: A Riemannian geometry of the multivariate normal model. Scand. J. Stat. 11(4), 211–223 (1984)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2017 Springer International Publishing AG
About this paper
Cite this paper
Mostajeran, C., Sepulchre, R. (2017). Affine-Invariant Orders on the Set of Positive-Definite Matrices. In: Nielsen, F., Barbaresco, F. (eds) Geometric Science of Information. GSI 2017. Lecture Notes in Computer Science(), vol 10589. Springer, Cham. https://doi.org/10.1007/978-3-319-68445-1_71
Download citation
DOI: https://doi.org/10.1007/978-3-319-68445-1_71
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-68444-4
Online ISBN: 978-3-319-68445-1
eBook Packages: Computer ScienceComputer Science (R0)