Skip to main content

Geodesic Least Squares Regression on the Gaussian Manifold with an Application in Astrophysics

  • Conference paper
  • First Online:
Geometric Science of Information (GSI 2017)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 10589))

Included in the following conference series:

  • 2404 Accesses

Abstract

We present a new regression method called geodesic least squares (GLS), which is particularly robust against data and model uncertainty. It is based on minimization of the Rao geodesic distance on a probabilistic manifold. We apply GLS to Tully-Fisher scaling of the total baryonic mass vs. the rotation velocity in disk galaxies and we show the excellent robustness properties of GLS for estimating the coefficients and the tightness of the scaling.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Verdoolaege, G.: A new robust regression method based on minimization of geodesic distances on a probabilistic manifold: Application to power laws. Entropy 17(7), 4602–4626 (2015)

    Article  Google Scholar 

  2. Verdoolaege, G., Noterdaeme, J.-M.: Robust scaling in fusion science: case study for the L-H power threshold. Nucl. Fusion 55(11), 113019, (19 pp.) (2015)

    Google Scholar 

  3. Verdoolaege, G., Shabbir, A., Hornung, G.: Robust analysis of trends in noisy tokamak confinement data using geodesic least squares regression. Rev. Sci. Instrum. 87(11), 11D422, (3 pp.) (2016)

    Google Scholar 

  4. Fletcher, P.T.: Geodesic regression and the theory of least squares on riemannian manifolds. Int. J. Comput. Vis. 105(2), 171–185 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  5. Pak, R.J.: Minimum hellinger distance estimation in simple regression models; distribution and efficiency. Stat. Probab. Lett. 26(3), 263–269 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  6. Burbea, J., Rao, C.R.: Entropy differential metric, distance and divergence measures in probability spaces: a unified approach. J. Multivar. Anal. 12(4), 575–596 (1982)

    Article  MATH  MathSciNet  Google Scholar 

  7. Gill, P.E., Murray, W., Wright, M.H.: Numerical Linear Algebra and Optimization, vol. 1. Addison Wesley, Boston (1991)

    MATH  Google Scholar 

  8. Rao, C.R.: Differential metrics in probability spaces. In: Differential Geometry in Statistical Inference. Institute of Mathematical Statistics, Hayward, CA (1987)

    Google Scholar 

  9. McGaugh, S.S.: The baryonic Tully-Fisher relation of gas-rich galaxies as a test of \(\Lambda \)CDM and MOND. Astron. J. 143(2), 40, (15 pp.) (2012)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Geert Verdoolaege .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Verdoolaege, G. (2017). Geodesic Least Squares Regression on the Gaussian Manifold with an Application in Astrophysics. In: Nielsen, F., Barbaresco, F. (eds) Geometric Science of Information. GSI 2017. Lecture Notes in Computer Science(), vol 10589. Springer, Cham. https://doi.org/10.1007/978-3-319-68445-1_72

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-68445-1_72

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-68444-4

  • Online ISBN: 978-3-319-68445-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics