Abstract
Comparative convexity is a generalization of ordinary convexity based on abstract means instead of arithmetic means. We define and study the Bregman divergences with respect to comparative convexity. As an example, we consider the convexity induced by quasi-arithmetic means, report explicit formulas, and show that those Bregman divergences are equivalent to conformal ordinary Bregman divergences on monotone embeddings.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Aczél, J.: A generalization of the notion of convex functions. Det Kongelige Norske Videnskabers Selskabs Forhandlinger, Trondheim 19(24), 87–90 (1947)
Amari, S.: Information Geometry and Its Applications. Applied Mathematical Sciences. Springer, Tokyo (2016)
Banerjee, A., Merugu, S., Dhillon, I.S., Ghosh, J.: Clustering with bregman divergences. J. Mach. Learn. Res. 6, 1705–1749 (2005)
Berrone, L.R., Moro, J.: Lagrangian means. Aequationes Math. 55(3), 217–226 (1998)
Boissonnat, J.-D., Nielsen, F., Nock, R.: Bregman Voronoi diagrams. Discrete Comput. Geom. 44(2), 281–307 (2010)
Bregman, L.M.: The relaxation method of finding the common point of convex sets and its application to the solution of problems in convex programming. USSR Comput. Math. Math. Phys. 7(3), 200–217 (1967)
Bullen, P.S., Mitrinovic, D.S., Vasic, M.: Means and Their Inequalities, vol. 31. Springer, New York (2013)
Burbea, J., Rao, C.: On the convexity of some divergence measures based on entropy functions. IEEE Trans. Inf. Theory 28(3), 489–495 (1982)
De Finetti, B.: Sul concetto di media 3, 369–396 (1931). Istituto italiano degli attuari
Holder, O.L.: Über einen Mittelwertssatz. Nachr. Akad. Wiss. Gottingen Math.-Phys. Kl, pp. 38–47 (1889)
Kolmogorov, A.N.: Sur la notion de moyenne. Acad. Naz. Lincei Mem. Cl. Sci. His. Mat. Natur. Sez. 12, 388–391 (1930)
Matkowski, J.: On weighted extensions of Cauchy’s means. J. Math. Anal. Appl. 319(1), 215–227 (2006)
Nagumo, M.: Über eine klasse der mittelwerte. Jpn. J. Math. Trans. Abstracts 7, 71–79 (1930). The Mathematical Society of Japan
Niculescu, C.P., Persson, L.-E.: Convex Functions and Their Applications: A Contemporary Approach. Springer, New York (2006)
Nielsen, F., Boltz, S.: The Burbea-Rao and Bhattacharyya centroids. IEEE Trans. Inf. Theory 57(8), 5455–5466 (2011)
Nielsen, F., Nock, R.: Total jensen divergences: definition, properties and clustering. In: IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp. 2016–2020. IEEE (2015)
Nock, R., Nielsen, F., Amari, S.: On conformal divergences and their population minimizers. IEEE Trans. Inf. Theory 62(1), 527–538 (2016)
Petz, D.: Bregman divergence as relative operator entropy. Acta Mathematica Hung. 116(1–2), 127–131 (2007)
Vemuri, B.C., Liu, M., Amari, S., Nielsen, F.: Total bregman divergence and its applications to DTI analysis. IEEE Trans. Med. Imaging 30(2), 475–483 (2011)
Zhang, J.: Divergence function, duality, and convex analysis. Neural Comput. 16(1), 159–195 (2004)
Zhang, J.: Nonparametric information geometry: From divergence function to referential-representational biduality on statistical manifolds. Entropy 15(12), 5384–5418 (2013)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
A Quasi-arithmetic to Ordinary Convexity Criterion
A Quasi-arithmetic to Ordinary Convexity Criterion
Lemma 1
( \((\rho ,\tau )\) -convexity \(\leftrightarrow \) ordinary convexity [1]). Let \(\rho :I\rightarrow \mathbb {R}\) and \(\tau :J\rightarrow \mathbb {R}\) be two continuous and strictly monotone real-valued functions with \(\tau \) increasing, then function \(F:I\rightarrow J\) is \((\rho ,\tau )\)-convex iff function \(G=F_{\rho ,\tau } = \tau \circ F\circ \rho ^{-1}\) is (ordinary) convex on \(\rho (I)\).
Proof
Let us rewrite the \((\rho ,\tau )\)-convexity midpoint inequality as follows:
Since \(\tau \) is strictly increasing, we have:
Let \(u=\rho (x)\) and \(v=\rho (y)\) so that \(x=\rho ^{-1}(u)\) and \(y=\rho ^{-1}(v)\) (with \(u,v\in \rho (I)\)). Then it comes that:
This last inequality is precisely the ordinary midpoint convexity inequality for function \(G=F_{\rho ,\tau }=\tau \circ F\circ \rho ^{-1}\). Thus a function F is \((\rho ,\tau )\)-convex iff \(G=\tau \circ F\circ \rho ^{-1}\) is ordinary convex, and vice-versa.
Rights and permissions
Copyright information
© 2017 Springer International Publishing AG
About this paper
Cite this paper
Nielsen, F., Nock, R. (2017). Bregman Divergences from Comparative Convexity. In: Nielsen, F., Barbaresco, F. (eds) Geometric Science of Information. GSI 2017. Lecture Notes in Computer Science(), vol 10589. Springer, Cham. https://doi.org/10.1007/978-3-319-68445-1_74
Download citation
DOI: https://doi.org/10.1007/978-3-319-68445-1_74
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-68444-4
Online ISBN: 978-3-319-68445-1
eBook Packages: Computer ScienceComputer Science (R0)