Skip to main content

Density Estimation for Compound Cox Processes on Hyperspheres

  • Conference paper
  • First Online:
Geometric Science of Information (GSI 2017)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 10589))

Included in the following conference series:

  • 2391 Accesses

Abstract

Cox multiple scattering processes on hyperspheres are a class of doubly stochastic Poisson processes that can be used to describe scattering phenomenon in Physics (optics, micro-waves, acoustics, etc.). In this article, we present an EM (Expectation Maximization) technique to estimate the concentration parameter of a Compound Cox process with values on hyperspheres. The proposed algorithm is based on an approximation formula for multiconvolution of von Mises Fisher densities on spheres of any dimension.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    Here we make use of a notation abuse by expressing \(f(\varvec{x}_t;\mu ,\kappa )\) as a sum of dirac measure and a pdf. It has to be understood the following way: when \(\varvec{x}= \varvec{\mu }\), it equals the dirac mass, and for other cases it equals the density function.

References

  1. Le Bihan, N., Chatelain, F., Manton, J.: Isotropic multiple scattering processes on hyperspheres. IEEE Trans. Inf. Theory 62, 5740–5752 (2016)

    Article  MATH  MathSciNet  Google Scholar 

  2. Chatelain, F., Le Bihan, N., Manton, J.: Parameter estimation for multiple scattering process on the sphere. In: IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP) (2015)

    Google Scholar 

  3. Chatelain, F., Le Bihan, N.: von-mises fisher approximation of multiple scattering process on the hypershpere. In: IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP) (2013)

    Google Scholar 

  4. Mardia, K., Jupp, P.: Directional Statistics. Wiley, New York (2000)

    MATH  Google Scholar 

  5. Abramowitz, M., Stegun, I.A.: Handbook of Mathematical Functions: With Formulas, Graphs, and Mathematical Tables. Dover Publications, New York (1972)

    MATH  Google Scholar 

  6. Kent, J.: Limiting behaviour of the von Mises-Fisher distribution. Math. Proc. Cambridge Philos. Soc. 84, 531–536 (1978)

    Article  MATH  MathSciNet  Google Scholar 

  7. Le Bihan, N., Margerin, L.: Nonparametric estimation of the heterogeneity of a random medium using compound poisson process modeling of wave multiple scattering. Phys. Rev. E 80, 016601 (2009)

    Article  MathSciNet  Google Scholar 

  8. Lefebvre, M.: Applied Stochastic Processes. Springer, New York (2006)

    MATH  Google Scholar 

  9. Saleh, B.: Photoelectron Statistics. Springer, Heidelberg (1978)

    Book  Google Scholar 

  10. Sra, S.: A short note on parameter approximation for von mises-fisher distributions. Comput. Stat. 27, 177–190 (2012)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nicolas Le Bihan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Chatelain, F., Le Bihan, N., Manton, J.H. (2017). Density Estimation for Compound Cox Processes on Hyperspheres. In: Nielsen, F., Barbaresco, F. (eds) Geometric Science of Information. GSI 2017. Lecture Notes in Computer Science(), vol 10589. Springer, Cham. https://doi.org/10.1007/978-3-319-68445-1_79

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-68445-1_79

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-68444-4

  • Online ISBN: 978-3-319-68445-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics