Abstract
Cox multiple scattering processes on hyperspheres are a class of doubly stochastic Poisson processes that can be used to describe scattering phenomenon in Physics (optics, micro-waves, acoustics, etc.). In this article, we present an EM (Expectation Maximization) technique to estimate the concentration parameter of a Compound Cox process with values on hyperspheres. The proposed algorithm is based on an approximation formula for multiconvolution of von Mises Fisher densities on spheres of any dimension.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
Here we make use of a notation abuse by expressing \(f(\varvec{x}_t;\mu ,\kappa )\) as a sum of dirac measure and a pdf. It has to be understood the following way: when \(\varvec{x}= \varvec{\mu }\), it equals the dirac mass, and for other cases it equals the density function.
References
Le Bihan, N., Chatelain, F., Manton, J.: Isotropic multiple scattering processes on hyperspheres. IEEE Trans. Inf. Theory 62, 5740–5752 (2016)
Chatelain, F., Le Bihan, N., Manton, J.: Parameter estimation for multiple scattering process on the sphere. In: IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP) (2015)
Chatelain, F., Le Bihan, N.: von-mises fisher approximation of multiple scattering process on the hypershpere. In: IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP) (2013)
Mardia, K., Jupp, P.: Directional Statistics. Wiley, New York (2000)
Abramowitz, M., Stegun, I.A.: Handbook of Mathematical Functions: With Formulas, Graphs, and Mathematical Tables. Dover Publications, New York (1972)
Kent, J.: Limiting behaviour of the von Mises-Fisher distribution. Math. Proc. Cambridge Philos. Soc. 84, 531–536 (1978)
Le Bihan, N., Margerin, L.: Nonparametric estimation of the heterogeneity of a random medium using compound poisson process modeling of wave multiple scattering. Phys. Rev. E 80, 016601 (2009)
Lefebvre, M.: Applied Stochastic Processes. Springer, New York (2006)
Saleh, B.: Photoelectron Statistics. Springer, Heidelberg (1978)
Sra, S.: A short note on parameter approximation for von mises-fisher distributions. Comput. Stat. 27, 177–190 (2012)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2017 Springer International Publishing AG
About this paper
Cite this paper
Chatelain, F., Le Bihan, N., Manton, J.H. (2017). Density Estimation for Compound Cox Processes on Hyperspheres. In: Nielsen, F., Barbaresco, F. (eds) Geometric Science of Information. GSI 2017. Lecture Notes in Computer Science(), vol 10589. Springer, Cham. https://doi.org/10.1007/978-3-319-68445-1_79
Download citation
DOI: https://doi.org/10.1007/978-3-319-68445-1_79
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-68444-4
Online ISBN: 978-3-319-68445-1
eBook Packages: Computer ScienceComputer Science (R0)