Abstract
The theory of shape optimization problems constrained by partial differential equations is connected with the differential-geometric structure of the space of smooth shapes.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Absil, P.A., Mahony, R., Sepulchre, R.: Optimization Algorithms on Matrix Manifolds. Princeton University Press, Princeton (2008)
Bauer, M., Harms, P., Michor, P.M.: Sobolev metrics on shape space of surfaces. J. Geom. Mech. 3(4), 389–438 (2011)
Berggren, M.: A unified discrete–continuous sensitivity analysis method for shape optimization. In: Fitzgibbon, W., Kuznetsov, Y., Neittaanmäki, P., Périaux, J., Pironneau, O. (eds.) Applied and Numerical Partial Differential Equations. Computational Methods in Applied Sciences, vol. 15, pp. 25–39. Springer, Dordrecht (2010). doi:10.1007/978-90-481-3239-3_4
Céa, J.: Conception optimale ou identification de formes calcul rapide de la dérivée directionelle de la fonction coût. RAIRO Modelisation mathématique et analyse numérique 20(3), 371–402 (1986)
Delfour, M.C., Zolésio, J.-P.: Shapes and Geometries: Metrics, Analysis, Differential Calculus, and Optimization. Advances in Design and Control, 2nd edn., vol. 22. SIAM (2001)
Gangl, P., Laurain, A., Meftahi, H., Sturm, K.: Shape optimization of an electric motor subject to nonlinear magnetostatics. SIAM J. Sci. Comput. 37(6), B1002–B1025 (2015)
Ito, K., Kunisch, K., Peichl, G.H.: Variational approach to shape derivatives. ESAIM Control Optim. Calc. Var. 14(3), 517–539 (2008)
Kriegl, A., Michor, P.W.: The Convient Setting of Global Analysis. Mathematical Surveys and Monographs, vol. 53. American Mathematical Society (1997)
Laurain, A., Sturm, K.: Domain expression of the shape derivative and application to electrical impedance tomography. Technical report No. 1863, Weierstraß-Institut für angewandte Analysis und Stochastik, Berlin (2013)
Michor, P.M., Mumford, D.: Vanishing geodesic distance on spaces of submanifolds and diffeomorphisms. Doc. Math. 10, 217–245 (2005)
Michor, P.M., Mumford, D.: Riemannian geometries on spaces of plane curves. J. Eur. Math. Soc. 8(1), 1–48 (2006)
Michor, P.M., Mumford, D.: An overview of the Riemannian metrics on spaces of curves using the Hamiltonian approach. Appl. Comput. Harmon. Anal. 23(1), 74–113 (2007)
Mohammadi, B., Pironneau, O.: Applied Shape Optimization for Fluids. Oxford University Press, Oxford (2001)
Paganini, A.: Approximate shape gradients for interface problems. In: Pratelli, A., Leugering, G. (eds.) New Trends in Shape Optimization. ISNM, vol. 166, pp. 217–227. Springer, Cham (2015). doi:10.1007/978-3-319-17563-8_9
Pantz, O.: Sensibilitè de l’èquation de la chaleur aux sauts de conductivitè. Comptes Rendus Mathematique de l’Académie des Sciences 341(5), 333–337 (2005)
Schmidt, S., Wadbro, E., Berggren, M.: Large-scale three-dimensional acoustic horn optimization. SIAM J. Sci. Comput. 38(6), B917–B940 (2016)
Schulz, V.H., Siebenborn, M., Welker, K.: Structured inverse modeling in parabolic diffusion problems. SIAM J. Control Optim. 53(6), 3319–3338 (2015)
Schulz, V.H., Siebenborn, M., Welker, K.: Efficient PDE constrained shape optimization based on Steklov-Poincaré type metrics. SIAM J. Optim. 26(4), 2800–2819 (2016)
Siebenborn, M., Welker, K.: Computational aspects of multigrid methods for optimization in shape spaces. SIAM J. Sci. Comput. (2016). Submitted
Sokolowski, J., Zolésio, J.-P.: Introduction to Shape Optimization. Computational Mathematics, vol. 16. Springer, Heidelberg (1992)
Sturm, K.: Shape differentiability under non-linear PDE constraints. In: Pratelli, A., Leugering, G. (eds.) New Trends in Shape Optimization. ISNM, vol. 166, pp. 271–300. Springer, Cham (2015). doi:10.1007/978-3-319-17563-8_12
Acknowledgement
This work has been partly supported by the German Research Foundation within the priority program SPP 1962 under contract number Schu804/15-1.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2017 Springer International Publishing AG
About this paper
Cite this paper
Welker, K. (2017). Optimization in the Space of Smooth Shapes. In: Nielsen, F., Barbaresco, F. (eds) Geometric Science of Information. GSI 2017. Lecture Notes in Computer Science(), vol 10589. Springer, Cham. https://doi.org/10.1007/978-3-319-68445-1_8
Download citation
DOI: https://doi.org/10.1007/978-3-319-68445-1_8
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-68444-4
Online ISBN: 978-3-319-68445-1
eBook Packages: Computer ScienceComputer Science (R0)