Skip to main content

Co-occurrence Matrix of Covariance Matrices: A Novel Coding Model for the Classification of Texture Images

  • Conference paper
  • First Online:
Geometric Science of Information (GSI 2017)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 10589))

Included in the following conference series:

  • 2420 Accesses

Abstract

This paper introduces a novel local model for the classification of covariance matrices: the co-occurrence matrix of covariance matrices. Contrary to state-of-the-art models (BoRW, R-VLAD and RFV), this local model exploits the spatial distribution of the patches. Starting from the generative mixture model of Riemannian Gaussian distributions, we introduce this local model. An experiment on texture image classification is then conducted on the VisTex and Outex_TC000_13 databases to evaluate its potential.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Liu, C., Sharan, L., Adelson, E.H., Rosenholtz, R.: Exploring features in a Bayesian framework for material recognition. In: CVPR, pp. 239–246. IEEE Computer Society (2010)

    Google Scholar 

  2. Hiremath, P., Pujari, J.: Content based image retrieval using color, texture and shape features. In: 2012 18th International Conference on Advanced Computing and Communications (ADCOM), pp. 780–784 (2007)

    Google Scholar 

  3. de Luis-García, R., Westin, C.F., Alberola-López, C.: Gaussian mixtures on tensor fields for segmentation: applications to medical imaging. Comput. Med. Imaging Graph. 35(1), 16–30 (2011)

    Article  Google Scholar 

  4. Cirujeda, P., Cid, Y.D., Müller, H., Rubin, D.L., Aguilera, T.A., Loo, B.W., Diehn, M., Binefa, X., Depeursinge, A.: A 3-D Riesz-covariance texture model for prediction of nodule recurrence in Lung CT. IEEE Trans. Med. Imaging 35(12), 2620–2630 (2016)

    Article  Google Scholar 

  5. Zhu, C., Yang, X.: Study of remote sensing image texture analysis and classification using wavelet. Int. J. Remote Sens. 19(16), 3197–3203 (1998)

    Article  Google Scholar 

  6. Regniers, O., Bombrun, L., Lafon, V., Germain, C.: Supervised classification of very high resolution optical images using wavelet-based textural features. IEEE Trans. Geosci. Remote Sens. 54(6), 3722–3735 (2016)

    Article  Google Scholar 

  7. Tan, X., Triggs, B.: Enhanced local texture feature sets for face recognition under difficult lighting conditions. In: Zhou, S.K., Zhao, W., Tang, X., Gong, S. (eds.) AMFG 2007. LNCS, vol. 4778, pp. 168–182. Springer, Heidelberg (2007). doi:10.1007/978-3-540-75690-3_13

    Chapter  Google Scholar 

  8. Vu, N.S., Dee, H.M., Caplier, A.: Face recognition using the POEM descriptor. Pattern Recogn. 45(7), 2478–2488 (2012)

    Article  Google Scholar 

  9. Nguyen, T.P., Vu, N., Manzanera, A.: Statistical binary patterns for rotational invariant texture classification. Neurocomputing 173, 1565–1577 (2016)

    Article  Google Scholar 

  10. Tuzel, O., Porikli, F., Meer, P.: Region covariance: a fast descriptor for detection and classification. In: Leonardis, A., Bischof, H., Pinz, A. (eds.) ECCV 2006. LNCS, vol. 3952, pp. 589–600. Springer, Heidelberg (2006). doi:10.1007/11744047_45

    Chapter  Google Scholar 

  11. Jayasumana, S., Hartley, R.I., Salzmann, M., Li, H., Harandi, M.T.: Kernel methods on the Riemannian manifold of symmetric positive definite matrices. In: IEEE CVPR, pp. 73–80 (2013)

    Google Scholar 

  12. Faraki, M., Harandi, M.T., Wiliem, A., Lovell, B.C.: Fisher tensors for classifying human epithelial cells. Pattern Recogn. 47(7), 2348–2359 (2014)

    Article  Google Scholar 

  13. Faraki, M., Harandi, M.T., Porikli, F.: More about VLAD: a leap from Euclidean to Riemannian manifolds. In: IEEE CVPR, pp. 4951–4960, June 2015

    Google Scholar 

  14. Ilea, I., Bombrun, L., Germain, C., Terebes, R., Borda, M., Berthoumieu, Y.: Texture image classification with Riemannian Fisher vectors. In: IEEE ICIP, pp. 3543–3547 (2016)

    Google Scholar 

  15. Perronnin, F., Sánchez, J., Mensink, T.: Improving the Fisher kernel for large-scale image classification. In: Daniilidis, K., Maragos, P., Paragios, N. (eds.) ECCV 2010. LNCS, vol. 6314, pp. 143–156. Springer, Heidelberg (2010). doi:10.1007/978-3-642-15561-1_11

    Chapter  Google Scholar 

  16. Perronnin, F., Liu, Y., Sánchez, J., Poirier, H.: Large-scale image retrieval with compressed Fisher vectors. In: The Twenty-Third IEEE Conference on Computer Vision and Pattern Recognition, San Francisco, CA, USA, pp. 3384–3391 (2010)

    Google Scholar 

  17. Said, S., Bombrun, L., Berthoumieu, Y., Manton, J.H.: Riemannian Gaussian distributions on the space of symmetric positive definite matrices. IEEE Trans. Inf. Theory 63(4), 2153–2170 (2017)

    Article  MATH  MathSciNet  Google Scholar 

  18. Said, S., Bombrun, L., Berthoumieu, Y.: Texture classification using Rao’s distance on the space of covariance matrices. In: Geometric Science of Information (2015)

    Google Scholar 

  19. Faraki, M., Palhang, M., Sanderson, C.: Log-Euclidean bag of words for human action recognition. IET Comput. Vision 9(3), 331–339 (2015)

    Article  Google Scholar 

  20. Higham, N.J.: Functions of Matrices: Theory and Computation. Society for Industrial and Applied Mathematics, Philadelphia (2008)

    Book  MATH  Google Scholar 

  21. Vision Texture Database. MIT Vision and Modeling Group. http://vismod.media.mit.edu/pub/VisTex

  22. Outex Texture Database. Center for Machine Vision Research of the University of Oulu. http://www.outex.oulu.fi/index.php?page=classification

  23. Ledoux, A., Losson, O., Macaire, L.: Texture classification with fuzzy color co-occurrence matrices. In: IEEE ICIP, pp. 1429–1433, September 2015

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lionel Bombrun .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Ilea, I., Bombrun, L., Said, S., Berthoumieu, Y. (2017). Co-occurrence Matrix of Covariance Matrices: A Novel Coding Model for the Classification of Texture Images. In: Nielsen, F., Barbaresco, F. (eds) Geometric Science of Information. GSI 2017. Lecture Notes in Computer Science(), vol 10589. Springer, Cham. https://doi.org/10.1007/978-3-319-68445-1_85

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-68445-1_85

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-68444-4

  • Online ISBN: 978-3-319-68445-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics