Skip to main content

Positive Signal Spaces and the Mehler-Fock Transform

  • Conference paper
  • First Online:
Geometric Science of Information (GSI 2017)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 10589))

Included in the following conference series:

  • 2417 Accesses

Abstract

Eigenvector expansions and perspective projections are used to decompose a space of positive functions into a product of a half-axis and a solid unit ball. This is then used to construct a conical coordinate system where one component measures the distance to the origin, a radial measure of the distance to the axis and a unit vector describing the position on the surface of the ball. A Lorentz group is selected as symmetry group of the unit ball which leads to the Mehler-Fock transform as the Fourier transform of functions depending an the radial coordinate only. The theoretical results are used to study statistical properties of edge magnitudes computed from databases of image patches. The constructed radial values are independent of the orientation of the incoming light distribution (since edge-magnitudes are used), they are independent of global intensity changes (because of the perspective projection) and they characterize the second order statistical moment properties of the image patches. Using a large database of images of natural scenes it is shown that the generalized extreme value distribution provides a good statistical model of the radial components. Finally, the visual properties of textures are characterized using the Mehler-Fock transform of the probability density function of the generalized extreme value distribution.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    Available at http://tofu.psych.upenn.edu/~upennidb.

References

  1. Bateman, H., Erdélyi, A., States, U. (eds.): Tables of Integral Transforms, vol. 2. McGraw-Hill, New York (1954)

    Google Scholar 

  2. Chirikjian, G., Kyatkin, A.: Harmonic Analysis for Engineers and Applied Scientists. Dover Publications, Mineola (2016)

    Google Scholar 

  3. Diaconis, P.: Group representations in probability and statistics. In: Gupta, S.S. (ed.) Institute of Mathematical Statistics Lecture Notes - Monograph Series, vol. 11, Institute of Mathematical Statistics, Hayward, California (1988)

    Google Scholar 

  4. Fässler, A., Stiefel, E.: Group Theoretical Methods and Their Applications. Birkhäuser, New York (1992)

    Book  MATH  Google Scholar 

  5. Gerhard, H.E., Theis, L., Bethge, M.: Modeling natural image statistics. In: Biologically-Inspired Computer Vision, Fundamentals and Applications. Wiley (2015)

    Google Scholar 

  6. Gil, A., Segura, J., Temme, N.M.: Computing the conical function \(p^{\mu }_{-1/2+i\tau }(x)\). SIAM J. Sci. Comput. 31(3), 1716–1741 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  7. Lebedev, N.N.: Special Functions and Their Applications. Dover, New York (1972)

    MATH  Google Scholar 

  8. Lenz, R.: Group Theoretical Methods in Image Processing. LNCS, vol. 413. Springer, Heidelberg (1990). doi:10.1007/3-540-52290-5

    Google Scholar 

  9. Lenz, R.: Investigation of receptive fields using representations of dihedral groups. J. Vis. Comm. Im. Repr. 6(3), 209–227 (1995)

    Article  MathSciNet  Google Scholar 

  10. Lenz, R.: Lie methods for color robot vision. Robotica 26(4), 453–464 (2008)

    Article  Google Scholar 

  11. Lenz, R.: Spectral color spaces: their structure and transformations. In: Hawkes, P.W. (ed.) Advances in Imaging and Electron Physics, vol. 138, pp. 1–67. Elsevier, Amsterdam (2005)

    Google Scholar 

  12. Olver, F.W.J.: NIST Handbook of Mathematical Functions. Cambridge University Press, New York (2010)

    MATH  Google Scholar 

  13. Serre, J.: Linear Representations of Finite Groups. Springer, New York (2012). Softcover. ISBN 10: 1468494600 ISBN 13: 9781468494600

    Google Scholar 

  14. Sneddon, I.N.: The Use of Integral Transforms. McGraw-Hill, New York (1972)

    MATH  Google Scholar 

  15. Terras, A.: Harmonic Analysis on Symmetric Spaces and Applications I. Springer, New York (1985). doi:10.1007/978-1-4612-5128-6

    Book  MATH  Google Scholar 

  16. Tkacik, G., Garrigan, P., Ratliff, C., Milcinski, G., Klein, J., Seyfarth, L., Sterling, P., Brainard, D., Balasubramanian, V.: Natural images from the birthplace of the human eye. PLoS ONE 6(6), e20409 (2011)

    Article  Google Scholar 

  17. Vilenkin, N.J., Klimyk, A.U.: Representation of Lie Groups and Special Functions: Volume 1: Simplest Lie Groups, Special Functions and Integral Transforms. In: Springer Science & Business Media, Mathematics, 6 Dec 2012, 612 pages. Springer, Dordrecht (2012)

    Google Scholar 

Download references

Acknowledgements

The support of the Swedish Research Council through a framework grant for the project “Energy Minimization for Computational Cameras” (2014-6227) is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Reiner Lenz .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Lenz, R. (2017). Positive Signal Spaces and the Mehler-Fock Transform. In: Nielsen, F., Barbaresco, F. (eds) Geometric Science of Information. GSI 2017. Lecture Notes in Computer Science(), vol 10589. Springer, Cham. https://doi.org/10.1007/978-3-319-68445-1_86

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-68445-1_86

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-68444-4

  • Online ISBN: 978-3-319-68445-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics