Skip to main content

Vessel Tracking via Sub-Riemannian Geodesics on the Projective Line Bundle

  • Conference paper
  • First Online:
Geometric Science of Information (GSI 2017)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 10589))

Included in the following conference series:

Abstract

We study a data-driven sub-Riemannian (SR) curve optimization model for connecting local orientations in orientation lifts of images. Our model lives on the projective line bundle \(\mathbb {R}^{2} \times P^{1}\), with \(P^{1}=S^{1}/_{\sim }\) with identification of antipodal points. It extends previous cortical models for contour perception on \(\mathbb {R}^{2} \times P^{1}\) to the data-driven case. We provide a complete (mainly numerical) analysis of the dynamics of the 1st Maxwell-set with growing radii of SR-spheres, revealing the cut-locus. Furthermore, a comparison of the cusp-surface in \(\mathbb {R}^{2} \times P^{1}\) to its counterpart in \(\mathbb {R}^{2} \times S^{1}\) of a previous model, reveals a general and strong reduction of cusps in spatial projections of geodesics. Numerical solutions of the model are obtained by a single wavefront propagation method relying on a simple extension of existing anisotropic fast-marching or iterative morphological scale space methods. Experiments show that the projective line bundle structure greatly reduces the presence of cusps. Another advantage of including \(\mathbb {R}^2 \times P^{1}\) instead of \(\mathbb {R}^{2} \times S^{1}\) in the wavefront propagation is reduction of computational time.

Joint main authors. The ERC is gratefully acknowledged for financial support (ERC-StG nr. 335555). Sections 1, 2 of the paper are written by R. Duits and A. Mashtakov, Sect. 3 is written by A. Mashtakov, Yu. Sachkov and R. Duits, Sects. 4, 6 are written by R. Duits and A. Mashtakov, and Sect. 5 is written by E.J. Bekkers. The work of A. Mashtakov and Yu. Sachkov is supported by the Russian Science Foundation under grant 17-11-01387 and performed in Ailamazyan Program Systems Institute of Russian Academy of Sciences.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Peyré, G., Péchaud, M., Keriven, R., Cohen, L.D.: Geodesic methods in computer vision and graphics. Found. Trends Comput. Graph. Vis. 5(34), 197–397 (2010)

    MATH  Google Scholar 

  2. Caselles, V., Kimmel, R., Sapiro, G.: Geodesic active contours. IJCV 22(1), 61–79 (1997)

    Article  MATH  Google Scholar 

  3. Cohen, L., Kimmel, R.: Global minimum for active contour models. IJCV 24(1), 57–78 (1997)

    Article  Google Scholar 

  4. Péchaud, M., Keriven, R., Peyré, G.: Extraction of tubular structures over an orientation domain. In: IEEE Conference on CVPR, pp. 336–342 (2009)

    Google Scholar 

  5. Bekkers, E.J.: Retinal Image Analysis using Sub-Riemannian Geometry in SE(2), Ph.D. thesis, Eindhoven University of Technology, Biomedical Engineering (2017)

    Google Scholar 

  6. Chen, D.: New Minimal Path Models for Tubular Structure Extraction and Image Segmentation, Ph.D. thesis, Universite Paris Dauphine, PSL Research Univ. (2016)

    Google Scholar 

  7. Bekkers, E.J., Duits, R., Mashtakov, A., Sanguinetti, G.: A PDE approach to data-driven sub-riemannian geodesics in SE(2). SIAM-SIIMS 8(4), 2740–2770 (2015)

    Article  MATH  MathSciNet  Google Scholar 

  8. Duits, R., Meesters, S., Mirebeau, J., Portegies, J.: Optimal paths for variants of the 2d, 3d Reeds-Shepp. car with applications in image analysis (arXiv: 1612.06137) (2017)

  9. Zhang, J., Dashtbozorg, B., Bekkers, E., Pluim, J., Duits, R., ter Haar Romeny, B.: Robust retinal vessel segmentation via locally adaptive derivative frames in orientation scores. IEEE TMI 35(12), 2631–2644 (2016)

    Google Scholar 

  10. Citti, G., Sarti, A.: A cortical based model of perceptual completion in the roto-translation space. JMIV 24(3), 307–326 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  11. Petitot, J.: Vers une Neuro-gèométrie: fibrations corticales, structures de contact et contours subjectifs modaux. Math. Inf. Sci. Humaines 145, 5–101 (1999)

    MathSciNet  Google Scholar 

  12. Boscain, U., Duits, R., Rossi, F., Sachkov, Y.: Curve cuspless reconstruction via sub-Riemannian geometry. ESAIM: COCV 20, 748–770 (2014)

    Article  MATH  MathSciNet  Google Scholar 

  13. Mashtakov, A.P., Ardentov, A.A., Sachkov, Y.L.: Parallel algorithm and software for image inpainting via sub-Riemannian minimizers on the group of rototranslations. NMTMA 6(1), 95–115 (2013)

    MATH  MathSciNet  Google Scholar 

  14. Abbasi-Sureshjani, S., Zhang, J., Duits, R., ter Haar Romeny, B.: Retrieving challenging vessel connections in retinal images by line co-occurence statistics. Biol. Cybern. 111(3), 237–247 (2017)

    Article  MATH  Google Scholar 

  15. Agrachev, A.A., Sachkov, Y.L.: Control Theory from the Geometric Viewpoint. Springer, New York (2004)

    Book  MATH  Google Scholar 

  16. Agrachev, A.A., Barilari, D., Boscain, U.: Introduction to Riemannian and Sub-Riemannian Geometry from the Hamiltonian Viewpoint, preprint SISSA 09/2012/M, 20 November 2016

    Google Scholar 

  17. Sachkov, Y.L.: Conjugate and cut time in the sub-Riemannian problem on the group of motions of a plane. ESAIM: COCV 16(4), 1018–1039 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  18. Moiseev, I., Sachkov, Y.L.: Maxwell strata in sub-Riemannian problem on the group of motions of a plane. ESAIM: COCV 16(2), 380–399 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  19. Sachkov, Y.L.: Cut locus and optimal synthesis in the sub-Riemannian problem on the group of motions of a plane. ESAIM: COCV 17(2), 293–321 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  20. Duits, R., Boscain, U., Rossi, F., Sachkov, Y.: Association fields via cuspless sub-Riemannian geodesics in SE(2). JMIV 49(2), 384–417 (2014)

    Article  MATH  MathSciNet  Google Scholar 

  21. Mirebeau, J.-M.: Anisotropic fast-marching on cartesian grids using lattice basis reduction. SIAM J. Num. Anal. 52(4), 1573–1599 (2014)

    Article  MATH  MathSciNet  Google Scholar 

  22. Sanguinetti, G., Bekkers, E., Duits, R., Janssen, M.H.J., Mashtakov, A., Mirebeau, J.-M.: Sub-riemannian fast marching in SE(2). Progress in Pattern Recognition, Image Analysis, Computer Vision, and Applications. LNCS, vol. 9423, pp. 366–374. Springer, Cham (2015). doi:10.1007/978-3-319-25751-8_44

    Chapter  Google Scholar 

  23. Duits, R., Felsberg, M., Granlund, G., ter Haar Romeny, B.M.: Image analysis and reconstruction using a wavelet transform constructed from a reducible representation of the Euclidean motion group. IJCV 72(1), 79–102 (2007)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Remco Duits or Alexey Mashtakov .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Bekkers, E.J., Duits, R., Mashtakov, A., Sachkov, Y. (2017). Vessel Tracking via Sub-Riemannian Geodesics on the Projective Line Bundle. In: Nielsen, F., Barbaresco, F. (eds) Geometric Science of Information. GSI 2017. Lecture Notes in Computer Science(), vol 10589. Springer, Cham. https://doi.org/10.1007/978-3-319-68445-1_89

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-68445-1_89

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-68444-4

  • Online ISBN: 978-3-319-68445-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics