Skip to main content

On the Existence of Paths Connecting Probability Distributions

  • Conference paper
  • First Online:
Geometric Science of Information (GSI 2017)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 10589))

Included in the following conference series:

Abstract

We introduce a class of paths defined in terms of two deformed exponential functions. Exponential paths correspond to a special case of this class of paths. Then we give necessary and sufficient conditions for any two probability distributions being path connected.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Cena, A., Pistone, G.: Exponential statistical manifold. Ann. Inst. Statist. Math. 59(1), 27–56 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  2. de Souza, D.C., Vigelis, R.F., Cavalcante, C.C.: Geometry induced by a generalization of Rényi divergence. Entropy 18(11), 407 (2016)

    Article  Google Scholar 

  3. Eguchi, S., Komori, O.: Path connectedness on a space of probability density functions. In: Nielsen, F., Barbaresco, F. (eds.) GSI 2015. LNCS, vol. 9389, pp. 615–624. Springer, Cham (2015). doi:10.1007/978-3-319-25040-3_66

    Chapter  Google Scholar 

  4. Musielak, J.: Orlicz Spaces and Modular Spaces. LNM, vol. 1034. Springer, Heidelberg (1983). doi:10.1007/BFb0072210

    MATH  Google Scholar 

  5. Giovanni Pistone and Maria Piera Rogantin: The exponential statistical manifold: mean parameters, orthogonality and space transformations. Bernoulli 5(4), 721–760 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  6. Santacroce, M., Siri, P., Trivellato, B.: New results on mixture and exponential models by Orlicz spaces. Bernoulli 22(3), 1431–1447 (2016)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rui F. Vigelis .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Vigelis, R.F., de Andrade, L.H.F., Cavalcante, C.C. (2017). On the Existence of Paths Connecting Probability Distributions. In: Nielsen, F., Barbaresco, F. (eds) Geometric Science of Information. GSI 2017. Lecture Notes in Computer Science(), vol 10589. Springer, Cham. https://doi.org/10.1007/978-3-319-68445-1_92

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-68445-1_92

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-68444-4

  • Online ISBN: 978-3-319-68445-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics