Abstract
We introduce a class of paths defined in terms of two deformed exponential functions. Exponential paths correspond to a special case of this class of paths. Then we give necessary and sufficient conditions for any two probability distributions being path connected.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Cena, A., Pistone, G.: Exponential statistical manifold. Ann. Inst. Statist. Math. 59(1), 27–56 (2007)
de Souza, D.C., Vigelis, R.F., Cavalcante, C.C.: Geometry induced by a generalization of Rényi divergence. Entropy 18(11), 407 (2016)
Eguchi, S., Komori, O.: Path connectedness on a space of probability density functions. In: Nielsen, F., Barbaresco, F. (eds.) GSI 2015. LNCS, vol. 9389, pp. 615–624. Springer, Cham (2015). doi:10.1007/978-3-319-25040-3_66
Musielak, J.: Orlicz Spaces and Modular Spaces. LNM, vol. 1034. Springer, Heidelberg (1983). doi:10.1007/BFb0072210
Giovanni Pistone and Maria Piera Rogantin: The exponential statistical manifold: mean parameters, orthogonality and space transformations. Bernoulli 5(4), 721–760 (1999)
Santacroce, M., Siri, P., Trivellato, B.: New results on mixture and exponential models by Orlicz spaces. Bernoulli 22(3), 1431–1447 (2016)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2017 Springer International Publishing AG
About this paper
Cite this paper
Vigelis, R.F., de Andrade, L.H.F., Cavalcante, C.C. (2017). On the Existence of Paths Connecting Probability Distributions. In: Nielsen, F., Barbaresco, F. (eds) Geometric Science of Information. GSI 2017. Lecture Notes in Computer Science(), vol 10589. Springer, Cham. https://doi.org/10.1007/978-3-319-68445-1_92
Download citation
DOI: https://doi.org/10.1007/978-3-319-68445-1_92
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-68444-4
Online ISBN: 978-3-319-68445-1
eBook Packages: Computer ScienceComputer Science (R0)