Skip to main content

Classification of Totally Umbilical CR-Statistical Submanifolds in Holomorphic Statistical Manifolds with Constant Holomorphic Curvature

  • Conference paper
  • First Online:
Geometric Science of Information (GSI 2017)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 10589))

Included in the following conference series:

  • 2399 Accesses

Abstract

In 1985, Amari [1] introduced an interesting manifold, i.e., statistical manifold in the context of information geometry. The geometry of such manifolds includes the notion of dual connections, called conjugate connections in affine geometry, it is closely related to affine geometry. A statistical structure is a generalization of a Hessian one, it connects Hessian geometry.

In the present paper, we study CR-statistical submanifolds in holomorphic statistical manifolds. Some results on totally umbilical CR-statistical submanifolds with respect to \(\overline{\nabla }\) and \(\overline{\nabla }^{*}\) in holomorphic statistical manifolds with constant holomorphic curvature are obtained.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Amari, S.: Differential Geometric Methods in Statistics. Lecture Notes in Statistics, vol. 28. Springer, New York (1985)

    Book  MATH  Google Scholar 

  2. Aydin, M.E., Mihai, A., Mihai, I.: Some inequalities on submanifolds in statistical manifolds of constant curvature. Filomat 29(3), 465–477 (2015)

    Article  MATH  MathSciNet  Google Scholar 

  3. Bejancu, A.: CR submanifolds of a Kaehler manifold I. Proc. Am. MAth. Soc. 69, 135–142 (1978)

    MATH  Google Scholar 

  4. Blair, D.E., Vanhecke, L.: Umbilical submanifolds of sasakian space forms. J. Differ. Geom. 13(2), 273–278 (1978)

    Article  MATH  MathSciNet  Google Scholar 

  5. Chen, B.Y.: Geometry of Submanifolds. Marcel Dekker, New York (1973)

    MATH  Google Scholar 

  6. Chen, B.Y., Ogiue, K.: On totally real submanifolds. Trans. Amer. Math. Soc. 193, 257–266 (1974)

    Article  MATH  MathSciNet  Google Scholar 

  7. Furuhata, H., Hasegawa, I.: Submanifold theory in holomorphic statistical manifolds. In: Dragomir, S., Shahid, M.H., Al-Solamy, F.R. (eds.) Geometry of Cauchy-Riemann Submanifolds, pp. 179–215. Springer, Singapore (2016). doi:10.1007/978-981-10-0916-7_7

    Google Scholar 

  8. Kurose, T.: Conformal-projective geometry of statistical manifolds. Interdisc. Inf. Sci. 8(1), 89–100 (2002)

    MATH  MathSciNet  Google Scholar 

  9. Kurose, T.: Geometry of statistical manifolds. In: Mathematics in the 21st Century, Nihon-hyouron-sha, pp. 34–43 (2004). (in Japanese)

    Google Scholar 

  10. Nguiffo Boyom, M.: Foliations-webs-hessian geometry-information geometry-entropy and cohomology. Entropy 18, 433 (2016). doi:10.3390/e18120433

    Article  Google Scholar 

  11. Boyom, M.N., Jamali, M., Shahid, M.H.: Multiply CR-warped product statistical submanifolds of a holomorphic statistical space form. In: Nielsen, F., Barbaresco, F. (eds.) GSI 2015. LNCS, vol. 9389, pp. 257–268. Springer, Cham (2015). doi:10.1007/978-3-319-25040-3_29

    Chapter  Google Scholar 

  12. Nomizu, K.: Generalized central spheres and the notion of spheres in Riemannian geometry. Tohoku Math. J. 25, 129–137 (1973)

    Article  MATH  MathSciNet  Google Scholar 

  13. Nomizu, K., Yano, K.: On circles and spheres in Riemannian geometry. Math. Ann. 210(2), 163–170 (1974)

    Article  MATH  MathSciNet  Google Scholar 

  14. Siddiqui, A.N., Al-Solamy, F.R., Shahid, M.H.: On CR-statistical submanifolds of holomorphic statistical manifolds. Communicated

    Google Scholar 

  15. Yano, K., Kon, M.: Structures on Manifolds. Worlds Scientific, Singapore (1984)

    MATH  Google Scholar 

Download references

Acknowledgment

The authors are grateful to the referee for his/her valuable comments and suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aliya Naaz Siddiqui .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Boyom, M.N., Siddiqui, A.N., Othman, W.A.M., Shahid, M.H. (2017). Classification of Totally Umbilical CR-Statistical Submanifolds in Holomorphic Statistical Manifolds with Constant Holomorphic Curvature. In: Nielsen, F., Barbaresco, F. (eds) Geometric Science of Information. GSI 2017. Lecture Notes in Computer Science(), vol 10589. Springer, Cham. https://doi.org/10.1007/978-3-319-68445-1_93

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-68445-1_93

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-68444-4

  • Online ISBN: 978-3-319-68445-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics