Abstract
A stochastic approach to resolution is explored that uses information distances computed from the geometry of data models characterized by the Fisher information in cases with spatial-temporal measurements for multiple parameters. Stochastic resolution includes probability of resolution at signal-to-noise ratio (SNR) and separation of targets. The probability of resolution is assessed by exploiting different information distances in likelihood ratios. Taking SNR into account is especially relevant in compressive sensing (CS) due to its fewer measurements. Our stochastic resolution is also compared with actual resolution from sparse-signal processing that is nowadays a major part of any CS sensor. Results demonstrate the suitability of the proposed analysis due to its ability to include crucial impacts on the performance guarantees: array configuration or sensor design, SNR, separation and probability of resolution.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
den Dekker, A.J., van den Bos, A.: Resolution: a survey. J. Opt. Soc. Am. A 14(3), 547–557 (1997)
Smith, S.T.: Statistical resolution limits and the complexified CR bounds. IEEE Trans. SP 53(5), 1597–1609 (2005)
Liu, Z., Nehorai, A.: Statistical angular resolution limit for point sources. IEEE Trans. SP 55(11), 5521–5527 (2007)
Cheng, Y., Wang, X., Caelli, T., Li, X., Moran, B.: On information resolution of radar systems. IEEE Trans. AES 48(4), 3084–3102 (2012)
Rao, C.R.: Information and the accuracy attainable in the estimation of statistical parameters. Bull. Calcutta Math. Soc. 37, 81–89 (1945)
Amari, S.: Information geometry of statistical inference - an overview. In: IEEE ITW (2002)
Nielsen, F.: CRLB and Information Geometry (2013). https://arxiv.org/abs/1301.3578
Arnaudon, M., Barbaresco, F., Yang, L.: Riemannian medians and means with applications to radar signal processing. IEEE J. Sel. Top. SP 7(4), 595–604 (2013)
Brigo, D., Hanzon, B., LeGland, F.: A differential geometric approach to nonlinear filtering: the projection filter. IEEE Trans. Autom. Control 43(2), 247–252 (1998)
Donoho, D.: Compressed sensing. IEEE Trans. IT 52(4), 1289–1306 (2005)
Candès, E., Fernandez-Granda, C.: Towards a mathematical theory of super-resolution. Commun. Pure Appl. Math. 67(7), 906–956 (2014). Willey
Coutino, M., Pribić, R., Leus, G.: Direction of arrival estimation based on information geometry. In: IEEE ICASSP (2016)
Pribić, R., Coutino, M., Leus, G.: Stochastic resolution analysis of co-prime arrays in radar. In: IEEE SSP (2016)
Pribić, R.: Stochastic resolution analysis via a GLR test in radar. In: IEEE CoSeRa (2016)
Pribić, R., Leus, G.: Information distances for radar resolution analysis. In: IEEE CAMSAP (2017)
Pribić, R., Kyriakides, I.: Design of SSP in radar systems. In: IEEE ICASSP (2014)
Cook, C.E., Bernfeld, M.: Radar Signals; an Introduction to Theory and Application. Academic Press, Cambridge (1967)
Tibshirani, R.: Regression shrinkage and selection via the lasso. J. Roy. Stat. Soc. Ser. B 58(1), 267–288 (1996)
Fuchs, J.J.: The generalized likelihood ratio test and the sparse representations approach. In: Elmoataz, A., Lezoray, O., Nouboud, F., Mammass, D., Meunier, J. (eds.) ICISP 2010. LNCS, vol. 6134, pp. 245–253. Springer, Heidelberg (2010). doi:10.1007/978-3-642-13681-8_29
Van Trees, H.L.: Optimum Array Processing. Wiley, Hoboken (2002)
Kay, S.M.: Fundamentals of Statistical Signal Processing Volume II: Detection Theory. Prentice Hall, Upper Saddle River (1998)
YALL1: your algorithms for L1. http://yall1.blogs.rice.edu/
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2017 Springer International Publishing AG
About this paper
Cite this paper
Pribić, R. (2017). Information Distances in Stochastic Resolution Analysis. In: Nielsen, F., Barbaresco, F. (eds) Geometric Science of Information. GSI 2017. Lecture Notes in Computer Science(), vol 10589. Springer, Cham. https://doi.org/10.1007/978-3-319-68445-1_97
Download citation
DOI: https://doi.org/10.1007/978-3-319-68445-1_97
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-68444-4
Online ISBN: 978-3-319-68445-1
eBook Packages: Computer ScienceComputer Science (R0)