Skip to main content

Information Distances in Stochastic Resolution Analysis

  • Conference paper
  • First Online:
Geometric Science of Information (GSI 2017)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 10589))

Included in the following conference series:

  • 2383 Accesses

Abstract

A stochastic approach to resolution is explored that uses information distances computed from the geometry of data models characterized by the Fisher information in cases with spatial-temporal measurements for multiple parameters. Stochastic resolution includes probability of resolution at signal-to-noise ratio (SNR) and separation of targets. The probability of resolution is assessed by exploiting different information distances in likelihood ratios. Taking SNR into account is especially relevant in compressive sensing (CS) due to its fewer measurements. Our stochastic resolution is also compared with actual resolution from sparse-signal processing that is nowadays a major part of any CS sensor. Results demonstrate the suitability of the proposed analysis due to its ability to include crucial impacts on the performance guarantees: array configuration or sensor design, SNR, separation and probability of resolution.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. den Dekker, A.J., van den Bos, A.: Resolution: a survey. J. Opt. Soc. Am. A 14(3), 547–557 (1997)

    Article  Google Scholar 

  2. Smith, S.T.: Statistical resolution limits and the complexified CR bounds. IEEE Trans. SP 53(5), 1597–1609 (2005)

    Article  MATH  Google Scholar 

  3. Liu, Z., Nehorai, A.: Statistical angular resolution limit for point sources. IEEE Trans. SP 55(11), 5521–5527 (2007)

    Article  MathSciNet  Google Scholar 

  4. Cheng, Y., Wang, X., Caelli, T., Li, X., Moran, B.: On information resolution of radar systems. IEEE Trans. AES 48(4), 3084–3102 (2012)

    Google Scholar 

  5. Rao, C.R.: Information and the accuracy attainable in the estimation of statistical parameters. Bull. Calcutta Math. Soc. 37, 81–89 (1945)

    MATH  MathSciNet  Google Scholar 

  6. Amari, S.: Information geometry of statistical inference - an overview. In: IEEE ITW (2002)

    Google Scholar 

  7. Nielsen, F.: CRLB and Information Geometry (2013). https://arxiv.org/abs/1301.3578

  8. Arnaudon, M., Barbaresco, F., Yang, L.: Riemannian medians and means with applications to radar signal processing. IEEE J. Sel. Top. SP 7(4), 595–604 (2013)

    Google Scholar 

  9. Brigo, D., Hanzon, B., LeGland, F.: A differential geometric approach to nonlinear filtering: the projection filter. IEEE Trans. Autom. Control 43(2), 247–252 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  10. Donoho, D.: Compressed sensing. IEEE Trans. IT 52(4), 1289–1306 (2005)

    Article  Google Scholar 

  11. Candès, E., Fernandez-Granda, C.: Towards a mathematical theory of super-resolution. Commun. Pure Appl. Math. 67(7), 906–956 (2014). Willey

    Article  MATH  MathSciNet  Google Scholar 

  12. Coutino, M., Pribić, R., Leus, G.: Direction of arrival estimation based on information geometry. In: IEEE ICASSP (2016)

    Google Scholar 

  13. Pribić, R., Coutino, M., Leus, G.: Stochastic resolution analysis of co-prime arrays in radar. In: IEEE SSP (2016)

    Google Scholar 

  14. Pribić, R.: Stochastic resolution analysis via a GLR test in radar. In: IEEE CoSeRa (2016)

    Google Scholar 

  15. Pribić, R., Leus, G.: Information distances for radar resolution analysis. In: IEEE CAMSAP (2017)

    Google Scholar 

  16. Pribić, R., Kyriakides, I.: Design of SSP in radar systems. In: IEEE ICASSP (2014)

    Google Scholar 

  17. Cook, C.E., Bernfeld, M.: Radar Signals; an Introduction to Theory and Application. Academic Press, Cambridge (1967)

    Google Scholar 

  18. Tibshirani, R.: Regression shrinkage and selection via the lasso. J. Roy. Stat. Soc. Ser. B 58(1), 267–288 (1996)

    MATH  MathSciNet  Google Scholar 

  19. Fuchs, J.J.: The generalized likelihood ratio test and the sparse representations approach. In: Elmoataz, A., Lezoray, O., Nouboud, F., Mammass, D., Meunier, J. (eds.) ICISP 2010. LNCS, vol. 6134, pp. 245–253. Springer, Heidelberg (2010). doi:10.1007/978-3-642-13681-8_29

    Chapter  Google Scholar 

  20. Van Trees, H.L.: Optimum Array Processing. Wiley, Hoboken (2002)

    Book  Google Scholar 

  21. Kay, S.M.: Fundamentals of Statistical Signal Processing Volume II: Detection Theory. Prentice Hall, Upper Saddle River (1998)

    Google Scholar 

  22. YALL1: your algorithms for L1. http://yall1.blogs.rice.edu/

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Radmila Pribić .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Pribić, R. (2017). Information Distances in Stochastic Resolution Analysis. In: Nielsen, F., Barbaresco, F. (eds) Geometric Science of Information. GSI 2017. Lecture Notes in Computer Science(), vol 10589. Springer, Cham. https://doi.org/10.1007/978-3-319-68445-1_97

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-68445-1_97

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-68444-4

  • Online ISBN: 978-3-319-68445-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics