Abstract
We introduced two novel classes of Hölder divergences and Hölder pseudo-divergences that are both invariant to rescaling, and that both encapsulate the Cauchy-Schwarz divergence and the skew Bhattacharyya divergences. We review the elementary concepts of those parametric divergences, and perform a clustering analysis on two synthetic datasets. It is shown experimentally that the symmetrized Hölder divergences consistently outperform significantly the Cauchy-Schwarz divergence in clustering tasks.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Mitrinovic, D.S., Pecaric, J., Fink, A.M.: Classical and New Inequalities in Analysis, vol. 61. Springer Science & Business Media, New York (2013)
Kanamori, T., Fujisawa, H.: Affine invariant divergences associated with proper composite scoring rules and their applications. Bernoulli 20, 2278–2304 (2014)
Kanamori, T.: Scale-invariant divergences for density functions. Entropy 16, 2611–2628 (2014)
Arthur, D., Vassilvitskii, S.: \(k\)-means++: the advantages of careful seeding. In: ACM-SIAM Symposium on Discrete Algorithms, pp. 1027–1035 (2007)
Nielsen, F., Sun, K., Marchand-Maillet, S.: On Hölder projective divergences. Entropy 19, 122 (2017)
Holder, O.L.: Über einen Mittelwertssatz. Nachr. Akad. Wiss. Gottingen Math. Phys. Kl. 44, 38–47 (1889)
Nielsen, F., Boltz, S.: The Burbea-Rao and Bhattacharyya centroids. IEEE Trans. Inf. Theory 57, 5455–5466 (2011)
Nielsen, F., Nock, R.: Total Jensen divergences: definition, properties and clustering. In: Proceedings of the 2015 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), South Brisbane, Queensland, Australia, 19–24 April 2015, pp. 2016–2020 (2015)
Hasanbelliu, E., Giraldo, L.S., Principe, J.C.: Information theoretic shape matching. IEEE Trans. Pattern Anal. Mach. Intell. 36, 2436–2451 (2014)
Rami, H., Belmerhnia, L., Drissi El Maliani, A., El Hassouni, M.: Texture retrieval using mixtures of generalized gaussian distribution and cauchy-schwarz divergence in wavelet domain. Image Commun. 42, 45–58 (2016)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2017 Springer International Publishing AG
About this paper
Cite this paper
Nielsen, F., Sun, K., Marchand-Maillet, S. (2017). k-Means Clustering with Hölder Divergences. In: Nielsen, F., Barbaresco, F. (eds) Geometric Science of Information. GSI 2017. Lecture Notes in Computer Science(), vol 10589. Springer, Cham. https://doi.org/10.1007/978-3-319-68445-1_98
Download citation
DOI: https://doi.org/10.1007/978-3-319-68445-1_98
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-68444-4
Online ISBN: 978-3-319-68445-1
eBook Packages: Computer ScienceComputer Science (R0)