Skip to main content

k-Means Clustering with Hölder Divergences

  • Conference paper
  • First Online:
Geometric Science of Information (GSI 2017)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 10589))

Included in the following conference series:

Abstract

We introduced two novel classes of Hölder divergences and Hölder pseudo-divergences that are both invariant to rescaling, and that both encapsulate the Cauchy-Schwarz divergence and the skew Bhattacharyya divergences. We review the elementary concepts of those parametric divergences, and perform a clustering analysis on two synthetic datasets. It is shown experimentally that the symmetrized Hölder divergences consistently outperform significantly the Cauchy-Schwarz divergence in clustering tasks.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Mitrinovic, D.S., Pecaric, J., Fink, A.M.: Classical and New Inequalities in Analysis, vol. 61. Springer Science & Business Media, New York (2013)

    MATH  Google Scholar 

  • Kanamori, T., Fujisawa, H.: Affine invariant divergences associated with proper composite scoring rules and their applications. Bernoulli 20, 2278–2304 (2014)

    Article  MATH  MathSciNet  Google Scholar 

  • Kanamori, T.: Scale-invariant divergences for density functions. Entropy 16, 2611–2628 (2014)

    Article  MathSciNet  Google Scholar 

  • Arthur, D., Vassilvitskii, S.: \(k\)-means++: the advantages of careful seeding. In: ACM-SIAM Symposium on Discrete Algorithms, pp. 1027–1035 (2007)

    Google Scholar 

  • Nielsen, F., Sun, K., Marchand-Maillet, S.: On Hölder projective divergences. Entropy 19, 122 (2017)

    Article  Google Scholar 

  • Holder, O.L.: Über einen Mittelwertssatz. Nachr. Akad. Wiss. Gottingen Math. Phys. Kl. 44, 38–47 (1889)

    Google Scholar 

  • Nielsen, F., Boltz, S.: The Burbea-Rao and Bhattacharyya centroids. IEEE Trans. Inf. Theory 57, 5455–5466 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  • Nielsen, F., Nock, R.: Total Jensen divergences: definition, properties and clustering. In: Proceedings of the 2015 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), South Brisbane, Queensland, Australia, 19–24 April 2015, pp. 2016–2020 (2015)

    Google Scholar 

  • Hasanbelliu, E., Giraldo, L.S., Principe, J.C.: Information theoretic shape matching. IEEE Trans. Pattern Anal. Mach. Intell. 36, 2436–2451 (2014)

    Article  Google Scholar 

  • Rami, H., Belmerhnia, L., Drissi El Maliani, A., El Hassouni, M.: Texture retrieval using mixtures of generalized gaussian distribution and cauchy-schwarz divergence in wavelet domain. Image Commun. 42, 45–58 (2016)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Frank Nielsen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Nielsen, F., Sun, K., Marchand-Maillet, S. (2017). k-Means Clustering with Hölder Divergences. In: Nielsen, F., Barbaresco, F. (eds) Geometric Science of Information. GSI 2017. Lecture Notes in Computer Science(), vol 10589. Springer, Cham. https://doi.org/10.1007/978-3-319-68445-1_98

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-68445-1_98

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-68444-4

  • Online ISBN: 978-3-319-68445-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics