Skip to main content

Speaker Change Detection Using Binary Key Modelling with Contextual Information

  • Conference paper
  • First Online:
Statistical Language and Speech Processing (SLSP 2017)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 10583))

Included in the following conference series:

  • 768 Accesses

Abstract

Speaker change detection can be of benefit to a number of different speech processing tasks such as speaker diarization, recognition and detection. Current solutions rely either on highly localized data or on training with large quantities of background data. While efficient, the former tend to over-segment. While more stable, the latter are less efficient and need adaptation to mis-matching data. Building on previous work in speaker recognition and diarization, this paper reports a new binary key (BK) modelling approach to speaker change detection which aims to strike a balance between efficiency and segmentation accuracy. The BK approach benefits from training using a controllable degree of contextual data, rather than relying on external background data, and is efficient in terms of computation and speaker discrimination. Experiments on a subset of the standard ETAPE database show that the new approach outperforms the current state-of-the-art methods for speaker change detection and gives an average relative improvement in segment coverage and purity of 18.71% and 4.51% respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Anguera, X., Bonastre, J.F.: A novel speaker binary key derived from anchor models. In: Proceedings of the INTERSPEECH, pp. 2118–2121 (2010)

    Google Scholar 

  2. Anguera, X., Bonastre, J.F.: Fast speaker diarization based on binary keys. In: Proceedings of the IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp. 4428–4431. IEEE (2011)

    Google Scholar 

  3. Anguera, X., Movellan, E., Ferrarons, M.: Emotions recognition using binary fingerprints. In: Proceedings of the IberSPEECH (2012)

    Google Scholar 

  4. Barras, C., Zhu, X., Meignier, S., Gauvain, J.L.: Multistage speaker diarization of broadcast news. IEEE Trans. Audio Speech Lang. Process. 14(5), 1505–1512 (2006)

    Article  Google Scholar 

  5. Bonastre, J.F., Miró, X.A., Sierra, G.H., Bousquet, P.M.: Speaker modeling using local binary decisions. In: Proceedings of the INTERSPEECH, pp. 13–16 (2011)

    Google Scholar 

  6. Bredin, H.: Tristounet: triplet loss for speaker turn embedding. In: Proceedings of the IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp. 5430–5434. IEEE (2017)

    Google Scholar 

  7. Cettolo, M., Vescovi, M.: Efficient audio segmentation algorithms based on the BIC. In: Proceedings of the IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), vol. 6, pp. VI–537. IEEE (2003)

    Google Scholar 

  8. Chen, S., Gopalakrishnan, P.: Speaker, environment and channel change detection and clustering via the Bayesian information criterion. In: Proceedings of the DARPA Broadcast News Transcription and Understanding Workshop, vol. 8, pp. 127–132 (1998)

    Google Scholar 

  9. Cheng, S.S., Wang, H.M., Fu, H.C.: BIC-based speaker segmentation using divide-and-conquer strategies with application to speaker diarization. IEEE Trans. Audio Speech Lang. Process. 18(1), 141–157 (2010)

    Article  Google Scholar 

  10. Delacourt, P., Wellekens, C.J.: DISTBIC: a speaker-based segmentation for audio data indexing. Speech Commun. 32(1), 111–126 (2000)

    Article  Google Scholar 

  11. Delgado, H., Anguera, X., Fredouille, C., Serrano, J.: Improved binary key speaker diarization system. In: Proceedings of the 23rd European Signal Processing Conference (EUSIPCO), pp. 2087–2091 (2015)

    Google Scholar 

  12. Delgado, H., Anguera, X., Fredouille, C., Serrano, J.: Global speaker clustering towards optimal stopping criterion in binary key speaker diarization. In: Navarro Mesa, J.L., Ortega, A., Teixeira, A., Hernández Pérez, E., Quintana Morales, P., Ravelo García, A., Guerra Moreno, I., Toledano, D.T. (eds.) IberSPEECH 2014. LNCS, vol. 8854, pp. 59–68. Springer, Cham (2014). doi:10.1007/978-3-319-13623-3_7

    Google Scholar 

  13. Delgado, H., Anguera, X., Fredouille, C., Serrano, J.: Fast single-and cross-show speaker diarization using binary key speaker modeling. IEEE Trans. Audio Speech Lang. Process. 23(12), 2286–2297 (2015)

    Article  Google Scholar 

  14. Delgado, H., Anguera, X., Fredouille, C., Serrano, J.: Novel clustering selection criterion for fast binary key speaker diarization. In: Proceedings of the INTERSPEECH, pp. 3091–3095, Dresden, Germany (2015)

    Google Scholar 

  15. Delgado, H., Fredouille, C., Serrano, J.: Towards a complete binary key system for the speaker diarization task. In: Proceedings of the INTERSPEECH, pp. 572–576 (2014)

    Google Scholar 

  16. Gravier, G., Adda, G., Paulson, N., Carré, M., Giraudel, A., Galibert, O.: The ETAPE corpus for the evaluation of speech-based TV content processing in the French language. In: LREC-Eighth International Conference on Language Resources and Evaluation, p. na (2012)

    Google Scholar 

  17. Gupta, V.: Speaker change point detection using deep neural nets. In: Proceedings of the IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp. 4420–4424. IEEE (2015)

    Google Scholar 

  18. Hrúz, M., Zajíc, Z.: Convolutional neural network for speaker change detection in telephone speaker diarization system. In: Proceedings of the IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp. 4945–4949. IEEE (2017)

    Google Scholar 

  19. Luque, J., Anguera, X.: On the modeling of natural vocal emotion expressions through binary key. In: Proceedings of the 22nd European Signal Processing Conference (EUSIPCO), pp. 1562–1566 (2014)

    Google Scholar 

  20. Malegaonkar, A.S., Ariyaeeinia, A.M., Sivakumaran, P.: Efficient speaker change detection using adapted Gaussian mixture models. IEEE Trans. Audio Speech Lang. Process. 15(6), 1859–1869 (2007)

    Article  Google Scholar 

  21. Neri, L.V., Pinheiro, H.N., Ren, T.I., Cavalcanti, G.D.D.C., Adami, A.G.: Speaker segmentation using i-vector in meetings domain. In: Proceedings of the IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp. 5455–5459. IEEE (2017)

    Google Scholar 

  22. Patino, J., Delgado, H., Evans, N., Anguera, X.: EURECOM submission to the Albayzin 2016 speaker diarization evaluation. In: Proceedings of the IberSPEECH (2016)

    Google Scholar 

  23. Wang, R., Gu, M., Li, L., Xu, M., Zheng, T.F.: Speaker segmentation using deep speaker vectors for fast speaker change scenarios. In: Proceedings of the IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp. 5420–5424. IEEE (2017)

    Google Scholar 

  24. Wu, T.Y., Lu, L., Chen, K., Zhang, H.: Universal background models for real-time speaker change detection. In: MMM, pp. 135–149 (2003)

    Google Scholar 

  25. Zajíc, Z., Kunešová, M., Radová, V.: Investigation of segmentation in i-vector based speaker diarization of telephone speech. In: Ronzhin, A., Potapova, R., Németh, G. (eds.) SPECOM 2016. LNCS, vol. 9811, pp. 411–418. Springer, Cham (2016). doi:10.1007/978-3-319-43958-7_49

    Chapter  Google Scholar 

Download references

Acknowledgements

This work was supported through funding from the Agence Nationale de la Recherche (French research funding agency) in the context of the ODESSA project (ANR-15-CE39-0010). The authors acknowledge Hervé Bredin’s help in the evaluation of speaker change detection.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jose Patino .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Patino, J., Delgado, H., Evans, N. (2017). Speaker Change Detection Using Binary Key Modelling with Contextual Information. In: Camelin, N., Estève, Y., Martín-Vide, C. (eds) Statistical Language and Speech Processing. SLSP 2017. Lecture Notes in Computer Science(), vol 10583. Springer, Cham. https://doi.org/10.1007/978-3-319-68456-7_21

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-68456-7_21

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-68455-0

  • Online ISBN: 978-3-319-68456-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics