Skip to main content

Fast Similarity Search with the Earth Mover’s Distance via Feasible Initialization and Pruning

  • Conference paper
  • First Online:
Similarity Search and Applications (SISAP 2017)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 10609))

Included in the following conference series:

  • 1858 Accesses

Abstract

The Earth Mover’s Distance (EMD) is a similarity measure successfully applied to multidimensional distributions in numerous domains. Although the EMD yields very effective results, its high computational time complexity still remains a real bottleneck. Existing approaches used within a filter-and-refine framework aim at reducing the number of exact distance computations to alleviate query time cost. However, the refinement phase in which the exact EMD is computed dominates the overall query processing time. To this end, we propose to speed up the refinement phase by applying a novel feasible initialization technique (INIT) for the EMD computation which reutilizes the state-of-the-art lower bound IM-Sig. Our experimental evaluation over three real-world datasets points out the efficiency of our approach (This work is partially based on [12]).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Assent, I., Wenning, A., Seidl, T.: Approximation techniques for indexing the earth mover’s distance in multimedia databases. In: ICDE, p. 11 (2006)

    Google Scholar 

  2. Cohen, S.D., Guibas, L.J.: The earth mover’s distance: lower bounds and invariance under translation, Technical report. Stanford University (1997)

    Google Scholar 

  3. Gondzio, J.: Interior point methods 25 years later. EJOR 218(3), 587–601 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  4. Hillier, F., Lieberman, G.: Introduction to Linear Programming. McGraw-Hill, New York (1990)

    MATH  Google Scholar 

  5. Hinneburg, A., Lehner, W.: Database support for 3D-protein data set analysis. In: SSDBM, pp. 161–170 (2003)

    Google Scholar 

  6. Kusner, M.J., Sun, Y., Kolkin, N.I., Weinberger, K.Q.: From word embeddings to document distances. In: ICML, pp. 957–966 (2015)

    Google Scholar 

  7. Lehmann, T., et al.: Content-based image retrieval in medical applications. Methods Inf. Med. 43(4), 354–361 (2004)

    Google Scholar 

  8. Pele, O., Werman, M.: A linear time histogram metric for improved SIFT matching. In: Forsyth, D., Torr, P., Zisserman, A. (eds.) ECCV 2008. LNCS, vol. 5304, pp. 495–508. Springer, Heidelberg (2008). doi:10.1007/978-3-540-88690-7_37

    Chapter  Google Scholar 

  9. Rubner, Y., Tomasi, C., Guibas, L.: A metric for distributions with applications to image databases. In: ICCV, pp. 59–66 (1998)

    Google Scholar 

  10. Ruttenberg, B.E., Singh, A.K.: Indexing the earth mover’s distance using normal distributions. PVLDB 5(3), 205–216 (2011)

    Google Scholar 

  11. Seidl, T., Kriegel, H.: Optimal multi-step k-nearest neighbor search. In: SIGMOD, pp. 154–165 (1998)

    Google Scholar 

  12. Uysal, M.S.: Efficient Similarity Search in Large Multimedia Databases. Apprimus Verlag (2017)

    Google Scholar 

  13. Uysal, M.S., et al.: Efficient filter approximation using the EMD in very large multimedia databases with feature signatures. In: CIKM, pp. 979–988 (2014)

    Google Scholar 

  14. Vanderbei, R.J., Progr, L.: Foundations and Extensions. Springer, US (2014)

    Google Scholar 

  15. Vandersmissen, B., et al.: The rise of mobile and social short-form video: an in-depth measurement study of vine. In: SoMuS, vol. 1198, pp. 1–10 (2014)

    Google Scholar 

  16. Wichterich, M., et al.: Efficient emd-based similarity search in multimedia databases via flexible dimensionality reduction. In: SIGMOD, pp. 199–212 (2008)

    Google Scholar 

  17. Xu, J., Zhang, Z., et al.: Efficient and effective similarity search over probabilistic data based on earth mover’s distance. PVLDB 3(1), 758–769 (2010)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Merih Seran Uysal .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Uysal, M.S., Driessen, K., Brockhoff, T., Seidl, T. (2017). Fast Similarity Search with the Earth Mover’s Distance via Feasible Initialization and Pruning. In: Beecks, C., Borutta, F., Kröger, P., Seidl, T. (eds) Similarity Search and Applications. SISAP 2017. Lecture Notes in Computer Science(), vol 10609. Springer, Cham. https://doi.org/10.1007/978-3-319-68474-1_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-68474-1_10

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-68473-4

  • Online ISBN: 978-3-319-68474-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics