Abstract
A major challenge of the contemporary information age is the overwhelming and increasing data amount, especially when looking for specific information. Searching for relevant information is no longer manually possible, but has to rely on automatic methods, specifically, similarity search. From a formal perspective, similarity search can be seen as the problem of finding entities, which are considered to be similar to a query with respect to certain describing features. The question which features or which weighted combination of features to use for a given query creates a need for semi-automatic methods to address the needs of diverse users. Furthermore, the quality of the results of a similarity search is more than effectiveness, measured by precision and recall. The user ideally needs to trust the results and understand how they were computed. We propose to apply Visual Analytics methodologies, for synergistic cooperation of user and algorithms, to integrate three key dimensions of similarity search: users, tasks, and data for effective search. However, there exists a gap in knowledge how user, task as well as the available data influence each other and the similarity search. In this concept paper, we envision how Visual Analytics can be used to tackle current challenges of similarity search.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Adomavicius, G., Tuzhilin, A.: Context-aware recommender systems. In: Ricci, F., Rokach, L., Shapira, B. (eds.) Recommender Systems Handbook, pp. 191–226. Springer, Boston, MA (2015). doi:10.1007/978-1-4899-7637-6_6
Amar, R., Eagan, J., Stasko, J.: Low-level components of analytic activity in information visualization. In: 2005 IEEE Symposium on Information Visualization, INFOVIS 2005, pp. 111–117. IEEE (2005)
Amatriain, X., Jaimes, A., Oliver, N., and Pujol, J. M. Data mining methods for recommender systems. In: Ricci, F., Rokach, L., Shapira, B., Kantor, P. (eds.) Recommender Systems Handbook, pp. 39–71. Springer, Boston (2011). doi:10.1007/978-0-387-85820-3_2
Beyer, K., Goldstein, J., Ramakrishnan, R., Shaft, U.: When is “Nearest Neighbor” meaningful? In: Beeri, C., Buneman, P. (eds.) ICDT 1999. LNCS, vol. 1540, pp. 217–235. Springer, Heidelberg (1999). doi:10.1007/3-540-49257-7_15
Bobadilla, J., Ortega, F., Hernando, A., Gutiérrez, A.: Recommender systems survey. Knowl.-Based Syst. 46, 109–132 (2013)
Covington, P., Adams, J., Sargin, E.: Deep neural networks for YouTube recommendations. In: Proceedings of the 10th ACM Conference on Recommender Systems, pp. 191–198. ACM (2016)
Endert, A., Fox, S., Maiti, D., North, C.: The semantics of clustering: analysis of user-generated spatializations of text documents. In: Proceedings of the International Working Conference on Advanced Visual Interfaces, pp. 555–562. ACM (2012)
He, C., Parra, D., Verbert, K.: Interactive recommender systems: a survey of the state of the art and future research challenges and opportunities. Expert Syst. Appl. 56, 9–27 (2016)
Herlocker, J.L., Konstan, J.A., Terveen, L.G., Riedl, J.T.: Evaluating collaborative filtering recommender systems. ACM Trans. Inf. Syst. (TOIS) 22(1), 5–53 (2004)
Holmstrom, J.E.: Section III. Opening plenary session. In: The Royal Society Scientific Information Conference. Royal Society (1948)
Houle, M.E., Sakuma, J.: Fast approximate similarity search in extremely high-dimensional data sets. In: 2005 Proceedings of the 21st International Conference on Data Engineering, ICDE 2005, pp. 619–630. IEEE (2005)
Keim, D., Kohlhammer, J., Ellis, G., Mansmann, F.: Mastering the information age solving problems with visual analytics. Eurographics Association (2010)
Lau, A.Y., Coiera, E.W.: Do people experience cognitive biases while searching for information? J. Am. Med. Inform. Assoc. 14(5), 599–608 (2007)
Lew, M.S., Sebe, N., Djeraba, C., Jain, R.: Content-based multimedia information retrieval: state of the art and challenges. ACM Trans. Multimed. Comput. Commun. Appl. (TOMM) 2(1), 1–19 (2006)
Liu, K., Bellet, A., Sha, F.: Similarity learning for high-dimensional sparse data. In: AISTATS (2015)
Needleman, S.B., Wunsch, C.D.: A general method applicable to the search for similarities in the amino acid sequence of two proteins. J. Mol. Biol. 48(3), 443–453 (1970)
O’Mahony, M.P., Hurley, N.J., Silvestre, G.: Detecting noise in recommender system databases. In: Proceedings of the 11th International Conference on Intelligent User Interfaces, pp. 109–115. ACM (2006)
Picault, J., Ribiere, M., Bonnefoy, D., Mercer, K.: How to get the recommender out of the lab? In: Ricci, F., Rokach, L., Shapira, B., Kantor, P. (eds.) Recommender Systems Handbook, pp. 333–365. Springer, Boston (2011). doi:10.1007/978-0-387-85820-3_10
Rauber, P.E., Fadel, S.G., Falcao, A.X., Telea, A.C.: Visualizing the hidden activity of artificial neural networks. IEEE Trans. Visual Comput. Graphics 23(1), 101–110 (2017)
Ricci, F., Rokach, L., Shapira, B.: Recommender systems: introduction and challenges. In: Ricci, F., Rokach, L., Shapira, B. (eds.) Recommender Systems Handbook, pp. 1–34. Springer, Boston, MA (2015). doi:10.1007/978-1-4899-7637-6_1
Sacha, D., Boesecke, I., Fuchs, J., Keim, D.A.: Analytic behavior and trust building in visual analytics. In: Proceedings of the Eurographics/IEEE VGTC Conference on Visualization: Short Papers, pp. 143–147. Eurographics Association (2016)
Sacha, D., Stoffel, A., Stoffel, F., Kwon, B.C., Ellis, G., Keim, D.A.: Knowledge generation model for visual analytics. IEEE Trans. Visual Comput. Graphics 20(12), 1604–1613 (2014)
Seebacher, D., Stein, M., Janetzko, H., Keim, D.A., Retrieval, P.: A multi-modal visual analytics approach. In: Andrienko, N., Sedlmair, M., (eds.) EuroVis Workshop on Visual Analytics (EuroVA), pp. 013–017. The Eurographics Association (2016)
Shardanand, U., Maes, P.: Social information filtering: algorithms for automating word of mouth. In: Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, pp. 210–217. ACM Press/Addison-Wesley Publishing Co. (1995)
Smith, T.F., Waterman, M.S.: Identification of common molecular subsequences. J. Mol. Biol. 147(1), 195–197 (1981)
Swearingen, K., Sinha, R.: Beyond algorithms: an HCI perspective on recommender systems. In: ACM SIGIR 2001 Workshop on Recommender Systems, vol. 13, pp. 1–11. Citeseer (2001)
Yi, J.S., Ah Kang, Y., Stasko, J.: Toward a deeper understanding of the role of interaction in information visualization. IEEE Trans. Visual Comput. Graphics 13(6), 1224–1231 (2007)
Zahálka, J., Worring, M.: Towards interactive, intelligent, and integrated multimedia analytics. In: 2014 IEEE Conference on Visual Analytics Science and Technology (VAST), pp. 3–12. IEEE (2014)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2017 Springer International Publishing AG
About this paper
Cite this paper
Seebacher, D., Häußler, J., Stein, M., Janetzko, H., Schreck, T., Keim, D.A. (2017). Visual Analytics and Similarity Search: Concepts and Challenges for Effective Retrieval Considering Users, Tasks, and Data. In: Beecks, C., Borutta, F., Kröger, P., Seidl, T. (eds) Similarity Search and Applications. SISAP 2017. Lecture Notes in Computer Science(), vol 10609. Springer, Cham. https://doi.org/10.1007/978-3-319-68474-1_23
Download citation
DOI: https://doi.org/10.1007/978-3-319-68474-1_23
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-68473-4
Online ISBN: 978-3-319-68474-1
eBook Packages: Computer ScienceComputer Science (R0)