Abstract
The k-nearest neighbor (k-NN) graph is an important data structure for many data mining and machine learning applications. The accuracy of k-NN graphs depends on the object feature vectors, which are usually represented in high-dimensional spaces. Selecting the most important features is essential for providing compact object representations and for improving the graph accuracy. Having a compact feature vector can reduce the storage space and the computational complexity of search and learning tasks. In this paper, we propose NNWID-Descent, a similarity graph construction method that utilizes the NNF-Descent framework while integrating a new feature selection criterion, Support-Weighted Intrinsic Dimensionality, that estimates the contribution of each feature to the overall intrinsic dimensionality. Through extensive experiments on various datasets, we show that NNWID-Descent allows a significant amount of local feature vector sparsification while still preserving a reasonable level of graph accuracy.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Amsaleg, L., Chelly, O., Furon, T., Girard, S., Houle, M.E., Kawarabayashi, K., Nett, M.: Estimating local intrinsic dimensionality. In: KDD, pp. 29–38 (2015)
Anguita, D., Ghio, A., Oneto, L., Parra, X., Reyes-Ortiz, J.L.: A public domain dataset for human activity recognition using smartphones. In: ESANN (2013)
Brito, M., Chávez, E., Quiroz, A., Yukich, J.: Connectivity of the mutual \(k\)-nearest-neighbor graph in clustering and outlier detection. Stat. Probab. Lett. 35(1), 33–42 (1997)
Dong, W., Moses, C., Li, K.: Efficient K-nearest neighbor graph construction for generic similarity measures. In: WWW, pp. 577–586 (2011)
Dy, J.G., Brodley, C.E.: Feature selection for unsupervised learning. J. Mach. Learn. Res. 5, 845–889 (2004)
Geusebroek, J.M., Burghouts, G.J., Smeulders, A.W.M.: The Amsterdam library of object images. Int. J. Comput. Vis. 61(1), 103–112 (2005)
Han, E.-H.S., Karypis, G., Kumar, V.: Text categorization using weight adjusted k-nearest neighbor classification. In: Cheung, D., Williams, G.J., Li, Q. (eds.) PAKDD 2001. LNCS (LNAI), vol. 2035, pp. 53–65. Springer, Heidelberg (2001). doi:10.1007/3-540-45357-1_9
Hautamaki, V., Karkkainen, I., Franti, P.: Outlier detection using \(k\)-nearest neighbour graph. In: ICPR, vol. 3, pp. 430–433, August 2004
He, J., Li, M., Zhang, H.J., Tong, H., Zhang, C.: Manifold-ranking based image retrieval. In: ACM MM, pp. 9–16 (2004)
He, X., Cai, D., Niyogi, P.: Laplacian score for feature selection. In: NIPS, vol. 186, p. 189 (2005)
Hill, B.M.: A simple general approach to inference about the tail of a distribution. Ann. Stat. 3(5), 1163–1174 (1975)
Houle, M.E.: Dimensionality, discriminability, density & distance distributions. In: ICDMW, pp. 468–473 (2013)
Houle, M.E.: Local intrinsic dimensionality I: an extreme-value-theoretic foundation for similarity applications. In: SISAP, pp. 1–16 (2017)
Houle, M.E.: Local intrinsic dimensionality II: multivariate analysis and distributional support. In: SISAP, pp. 1–16 (2017)
Houle, M.E., Ma, X., Oria, V., Sun, J.: Improving the quality of K-NN graphs through vector sparsification: application to image databases. Int. J. Multimedia Inf. Retrieval 3(4), 259–274 (2014)
Houle, M.E., Oria, V., Satoh, S., Sun, J.: Knowledge propagation in large image databases using neighborhood information. In: ACM MM, pp. 1033–1036 (2011)
Lecun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proc. IEEE 86(11), 2278–2324 (1998)
Li, Y., Dong, M., Hua, J.: Localized feature selection for clustering. Pattern Recogn. Lett. 29(1), 10–18 (2008)
Lichman, M.: UCI Machine Learning Repository (2013). http://archive.ics.uci.edu/ml
Mitra, P., Murthy, C., Pal, S.K.: Unsupervised feature selection using feature similarity. IEEE TPAMI 24(3), 301–312 (2002)
Qin, D., Gammeter, S., Bossard, L., Quack, T., van Gool, L.: Hello neighbor: accurate object retrieval with \(k\)-reciprocal nearest neighbors. In: CVPR 2011, pp. 777–784, June 2011
Sarwar, B., Karypis, G., Konstan, J., Riedl, J.: Application of dimensionality reduction in recommender systems – a case study. Technical report, DTIC Document (2000)
Wang, Z., Liu, Z.: Graph-based KNN text classification. In: FSKD, vol. 5, pp. 2363–2366, August 2010
Yu, L., Liu, H.: Efficient feature selection via analysis of relevance and redundancy. J. Mach. Learn. Res. 5, 1205–1224 (2004)
Zou, H., Hastie, T., Tibshirani, R.: Sparse principal component analysis. J. Comput. Graph. Stat. 15(2), 265–286 (2006)
Acknowledgments
M.E. Houle acknowledges the financial support of JSPS Kakenhi Kiban (A) Research Grant 25240036 and JSPS Kakenhi Kiban (B) Research Grant 15H02753. V. Oria acknowledges the financial support of NSF Research Grant DGE 1565478.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2017 Springer International Publishing AG
About this paper
Cite this paper
Houle, M.E., Oria, V., Wali, A.M. (2017). Improving k-NN Graph Accuracy Using Local Intrinsic Dimensionality. In: Beecks, C., Borutta, F., Kröger, P., Seidl, T. (eds) Similarity Search and Applications. SISAP 2017. Lecture Notes in Computer Science(), vol 10609. Springer, Cham. https://doi.org/10.1007/978-3-319-68474-1_8
Download citation
DOI: https://doi.org/10.1007/978-3-319-68474-1_8
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-68473-4
Online ISBN: 978-3-319-68474-1
eBook Packages: Computer ScienceComputer Science (R0)