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Abstract. In logistic delivery chains time windows are common. An ar-
rival has to be in a certain time interval, at the expense of waiting time
or penalties if the time limits are exceeded. This paper looks at the opti-
mal placement of those time intervals in a specific case of a barge visiting
two ports in sequence. For the second port a possible delay or penalty
should be incorporated. Next, recognising these penalty structures in
data is analysed. Do certain patterns in public travel data indicate that
a certain dependency is existing.
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1 Introduction

Delivery windows are a known phenomenon in time window constrained models
for production scheduling and vehicle routing. In [3] an overview can be found of
recent literature on the use in production logistics. In the context of a delivery
performance model, a delivery window is defined as the difference between the
earliest acceptable delivery date and the latest acceptable delivery date. In sup-
ply chain management the problem of interest is the optimal positioning of the
delivery time window to minimise the expected cost of untimely delivery, such
as inventory costs and penalties or the estimation of accumulated delivery times
with uncertainty [4,3,5,6,7,9,10].

Delivery windows are also used in Vehicle Routing Problems (VRP). A VRP
involves finding a set of routes, starting and ending at a depot, that together
cover a set of customers. Each customer has a given demand, and no vehicle can
service more customers than its capacity permits. The objective is to minimise
the total distance travelled or the number of vehicles used, or a combination
of these. A special case of the VRP is when the service at a customer’s place
must start within a given time window. There are two types of time windows.
Time windows are called soft when they can be violated for a penalty cost. They
are hard when they cannot be violated, i.e., if a vehicle arrives too early at a
customer, it must wait until the time window opens; and it is not allowed to



arrive late. In all the cases these time windows are given in advance [8,2,1].

In this work a delivery chain is studied where a barge has to visit two ports.
In each port a number of containers is handled. For the planning of the port, the
planner of the barge should indicate a time slot in which the barge will arrive. If
the barge is too early, it has to wait until the beginning of the slot. If the barge
is too late, it has to wait some penalty time. If the barge arrives within the time
slot, the handling starts immediately. This means that we introduce a penalty
which occurrence is dependent on the arrival time, which duration is dependent
on the arrival time in case of early arrival, in combination with a two-stage time
window. Within this study, first the optimisation of the choice of the time slots
is elaborated in Section 2. The main question here is what the optimal time
slots are to be communicated to minimise the total of the penalties. Secondly, in
Section 3 the way to recognise the existence of such time slots with penalties in
travel data is studied. In practice often not all data and/or the precise process
is known. There the question is if we only see the arrival and departure times
of a barge (for example from GPS or AIS data) can we predict the underlying
process, to be able to predict the arrival time of the barges at some (final) stop.

2 Optimisation

The central case in this paper is a delivery chain where a barge has to visit two
ports. In each port a number of containers should be handled. For the planning
of the port, the planner of the barge should indicate a time slot in which the
barge will arrive. If the barge is too early, it has to wait until the beginning of
the slot. If the barge is too late, it has to wait some penalty time. If the barge
arrives within the time slot, the handling starts immediately. In this section the
optimal choice of the time window is determined.

2.1 Problem description

To formulate the problem, first some notation is defined:

Ti = Transportation time to port i, starting at the former location;
Hi = Handling time at port i;
Wi = Waiting time at port i;
Si = Start time slot at port i;
L = Length time slot
K = Penalty wait time

The question that arises is what would be the optimal start times of both
slots (S1 and S2) to minimise the sum of the waiting times (W1 +W2)? Different
probability distribution functions are used for the transportation and handling
times and, as a consequence, for the arrival time (X) at the port under consider-
ation. The arrival, in each of the ports therefor we skip the indices here, will be
in the interval (A,B) (see Fig. 1). We assume that, for each of the two stages,



S ≥ A and B ≥ S + L, while losing a part of the time slot will not be smart.
Only if L ≥ (B−A) this will not hold, but then we have no problem. The arrival
will be in one of the three intervals a, b or c. For each realisation of the arrival
time x we can calculate the waiting time:

A ≤x < S W = S − x
S ≤x ≤ S + L W = 0

S + L <x ≤ B W = K

Fig. 1. Process

2.2 First stage

Now the optimal choice for the starting time of the time slots can be derived,
by minimising the expected waiting time as a function of S1. We assume three
different options for the penalty: a fixed time, a function of the delay and a
random value. At the first port the arrival time X is equal to the transportation
time T1. For various probability distribution functions for T1 we obtain the
optimal value (S) for S1, the start of the first time slot.

Fixed penalty Given a fixed penalty K, the expected waiting time is given by:

E[W ] = E[W1X<S ] + E[W1S≤X<S+L] + E[W1S+L≤X ]

= E[(S −X)1X<S ] + E[01S≤X<S+L] + E[K1S+L≤X ]

= SE[1X<S ]− E[X1X<S ] + 0 +KE[1S+L≤X ]

= SF (S)−
∫ ∞
−∞

x1x<Sf(x)dx+K(1− F (S + L))

= SF (S)−
∫ S

−∞
xf(x)dx+K(1− F (S + L)).

The expected waiting time is minimised by:

d

dS
E[W ] = 0



resulting in

d

dS
E[W ] =

d

dS
SF (S)− d

dS

∫ S

−∞
xf(x)dx+

d

dS
K(1− F (S + L))

= Sf(S) + F (S)− Sf(S)−Kf(S + L) = F (S)−Kf(S + L)

So:

d

dS
E[W ] = 0 ⇐⇒ F (S) = K · f(S + L)

Now any distribution for X can be used. For three examples this will be elabo-
rated.

Uniform distribution If the transportation time and consequently the arrival
time X is uniform (A,B): F (S) = S−A

B−A and f(S) = 1
B−A , so we obtain:

d

dS
E[W ] = 0 ⇐⇒ S −A

B −A
= K · 1

B −A
⇐⇒ S −A = K ⇐⇒ S = A+K.

Recall that S has a maximum value of B − L, thus S = min (A+K,B − L).

Exponential distribution If the transportation time and consequently the
arrival time X is exponential distributed (λ) the expected waiting time equals:
Exponential: F (S) = 1− exp−λS and f(S) = λ exp−λS . So we obtain:

d

dS
E[W ] = 0 ⇐⇒ 1− exp−λS = Kλ exp−λ(S+L)

⇐⇒ 1 = (Kλ exp−λL +1) exp−λS

⇐⇒ −λS = log(
1

Kλ exp−λL +1
)

⇐⇒ S =
1

λ
log(Kλ exp−λL +1)

Normal distribution If the arrival time is normal (µ, σ) distributed, where
φ(.) denotes the normal probability density function and Φ(.) the cumulative
probability density, the waiting time is minimised by solving for S in:

Φ(S) = Kφ(S + L),

which has to be solved numerically.

Penalty as function of delay Now assume the penalty depends on how late
the barge is. Again, E[W ] is calculated, since the only term that changes com-
pared to the situation above is E[W1S+L≤X ]. The penalty equals k(X − S −L)
for some function k : [0,∞)→ [0,∞).

E[W1S+L≤X ] = E[k(X − S − L)1S+L≤X ] =

∫ ∞
S+L

k(x− S − L)f(x)dx



The derivative follows from3:

d

dS
E[W1S+L≤X ] =

d

dS

∫ ∞
S+L

k(x− S − L)f(x)dx

=

∫ ∞
S+L

−k′(x− S − L)f(x)dx− k(x− S − L)f(x)|x=S+L

= −
∫ ∞
S+L

k′(x− S − L)f(x)dx− k(0)f(S + L)

= −
∫ ∞
0

k′(x)f(x+ S + L)dx− k(0)f(S + L)

Combining with the steps above results in:

d

dS
E(W ) = F (S)−

∫ ∞
0

k′(x)f(x+ S + L)dx− k(0)f(S + L)

So

d

dS
E(W ) = 0 ⇐⇒ F (S) =

∫ ∞
0

k′(x)f(x+ S + L)dx+ k(0)f(S + L)

Note that if k is a constant, this expression reduces to what was found earlier.

Penalty is random variable, independent of X The third option concerns
a random penalty K, independent of X. Then last term becomes:

E[W1S+L≤X ] = E[K1S+L≤X ]

Since K and X are independent, so are K and 1S+L≤X , the expectations can
be multiplied to obtain:

E[W1S+L≤X ] = E[K]E[1S+L≤X ] = E[K](1− F (S + L))

d

dS
E(W ) = 0 ⇐⇒ F (S) = E[K]f(S + L)

In the case that K is constant this expression reduces to the first case again.

2.3 Second stage

The first stage resulted in a general formulation that can be used for the second
stage, given that the probability distribution of the arrival time at the second
port is known. However, the probability distribution function of the arrival time
(X) is more complicated, namely the sum of two transportation times, a handling
time and possibly a penalty. In Section 2.3 the penalty is neglected, later, in
Section 2.3, the propagation of the penalty is studied.

3 Under some regularity assumptions, for instance k must be differentiable on (0,∞)
and continuous on [0,∞))



Second time slot without penalty in the first time slot For the second
time slot without penalty, the same approach can be taken as in the first stage.
First note that here it is assumed that there is no penalty in the first time slot,
but obviously there is one in the second (since otherwise nothing would have
to be optimised). Now again for the three probability distributions (of each of
the stochastic variables, adding up to the arrival time at the second stage) the
solution can be derived.

Uniform distribution If the two transportation times and the handling time
all follow a uniform distribution, the arrival time has an Irwin-Hall distribu-
tion. This distribution converges quickly to the normal distribution. From our
experience, even in the case of only three underlying uniform distributions a
normal approximation is usable in practice. If T1 ∼ uniform(U1, U2), T2 ∼
uniform(U3, U4) and H1 ∼ uniform(U5, U6) then by approximation X ∼
Normal(µ, σ) where

µ =
1

2
(U2 − U1) +

1

2
(U4 − U3) +

1

2
(U6 − U5),

σ =

√
(U2 − U1)2

12
+

(U4 − U3)2

12
+

(U6 − U5)2

12
.

Now the method for the normal distribution of the previous stage can be used.

Exponential distribution In the case of exponential handling and transporting
times (and assuming independence) the second arrival time has an Erlang(3,λ)
distribution. This means:

F (x) = 1−
2∑

n=0

1

n!
exp−λx(λx)n

f(x) =
1

2
λ3x2 exp−λx

The formula above reduces the problem to finding s such that:

1− exp−λS −λS exp−λS −1

2
λ2S2 exp−λS =

1

2
Kλ3S2 exp−λ(S+L)

⇐⇒ expλS −1− λS − 1

2
λ2S2 =

1

2
Kλ3S2 exp−λL

⇐⇒ expλS =
1

2
(Kλ3 exp−λL +λ2)S2 + λS + 1.

The latter expression can be solved for S numerically.

Normal distribution If the two transportation times and the handling time
are all normally distributed and independent, the arrival time has a again a
normal distribution. If T1 ∼ Normal(µ1, σ1), T2 ∼ Normal(µ2, σ2) and H1 ∼
Normal(µ3, σ3) then X ∼ Normal(µ, σ) where

µ = µ1 + µ2 + µ3,



σ =
√
σ2
1 + σ2

2 + σ2
3 .

Now the method for the normal distribution of the previous section can be used.

Propagation of penalty: Second time slot with penalty The challenge
now is to derive an expression for the arrival time at the second port, including
the fact that there may have been a penalty at the first port. Then the formula
presented earlier can be applied to find the expression that has to be solved.
We assume T1, T2 and H1 to be independent. The time that is added to this due
to not arriving within the time frame, is the penalty P . So P is not only due to
arriving late. We see then:

P =

S − T1 if T1 ≤ S
0 if S < T1 ≤ S + L
k if T1 > S + L

Now we are interested in the second arrival time X = T1 + P + H + T2. Since
P and T1 are dependent of each other and the rest is independent, we will call
X1 = T1 + P and X2 = H + T2. The interesting part here is X1:

X1 =

T1 + S − T1 if T1 ≤ S
T1 + 0 if S < T1 ≤ S + L
T1 + k if T1 > S + L

=

S if T1 ≤ S
T1 if S < T1 ≤ S + L
T1 + k if T1 > S + L

Now the cumulative distribution function of X1 equals:

FX1(x) =


0 if x < S
FT1(x) if S ≤ x ≤ S + L
FT1(S + L) if S + L < x ≤ S + L+ k
FT1

(x− k) if x > S + L+ k

This is visualised in Fig. 2. The jump in the point S means that the random
variable is not absolutely continuous. This is what we expect, since the proba-
bility of starting the handling at point S equals P(T1 ≤ S) = FT1

(S), which is
strictly positive. We can describe the ’density’ in this way:

fX1
(x) =


0 if x < S
mass FT1

(S) if x = S
fT1(x) if S ≤ x ≤ S + L
0 if S + L < x ≤ S + L+ k
fT1

(x− k) if x > S + L+ k

Now we would like to obtain the cumulative density function and the density of



Fig. 2. CDF of B: time that handling begins

the sum of X1 and X2
4.

FX(x) = P(X1 +X2 ≤ x) =

∫ ∞
b=−∞

∫ x−b

a=−∞
fX1,X2

(b, a)dadb

=

∫ ∞
b=−∞

∫ x−b

a=−∞
fX1(b)fX2(a)dadb =

∫ ∞
b=−∞

∫ x−b

a=−∞
fX2(a)dafX1(b)db

=

∫ ∞
−∞

FX2
(x− b)fX1

(b)db

Now, using the description that we found of fX1 , we obtain:

FX(x) =

∫ ∞
−∞

FX2
A(x− b)fX1

(b)db

= FT1
(S)FX2

(x− S) +

∫ S+L

S

FX2
(x− b)fT1

(b)db

+

∫ ∞
S+L+k

FX2(x− b)fT1(b− k)db

4 Note that the following computations are strictly speaking ill-defined, since f is not
a continuous function. However, it is correct and this way a more intuitive derivation
is given. To be precise, one would have to use the Lebesgue-Stieltjes integral to avoid
speaking of f . Also note that we use independence of X1 and X2 when their joint
probability distribution function is written as the product of the marginals.



Differentiating this with respect to x yields (under some regularity conditions):

fX(x) = FT1
(S)fX2

(x− S) +

∫ S+L

S

fX2
(x− b)fT1

(b)db

+

∫ ∞
S+L+k

fX2
(x− b)fT1

(b− k)db

Note that X2 ≥ 0, so fX2
(x− b) will be 0 for b > x. So in practice, a part of the

integral will drop out.

To find the optimal time, we need to use the formula of the first stage opti-
misation again: FX(S2) = k2fX(S2 + L2). We obtain as the equation that has
to be solved for S2:

FT1(S)FX2(S2 − S) +

∫ S+L

S

FX2(S2 − b)fT1(b)db

+

∫ ∞
S+L+k

FX2
(S2 − b)fT1

(b− k)db = k2FT1
(S)fX2

(S2 + L2 − S)

+k2

∫ S+L

S

fX2
(S2 + L2 − b)fT1

(b)db+ k2

∫ ∞
S+L+k

fX2
(S2 + L2 − b)fT1

(b− k)db

By rearranging a bit, we get:

(k2fX2
(S2 + L2 − S)− FX2

(S2 − S))FT1
(S)

=

∫ S+L

S

(FX2(S2 − b)− k2fX−2(S2 + L2 − b))fT1(b)db

+

∫ ∞
S+L+k

(FX2
(S2 − b)− k2fX2

(S2 + L2 − b))fT1
(b− k)db

Note that in any situation with a sum of random variables, the convolution
integral appears. This usually cannot be simplified, except for nice situations
such as some known sums of random variables. This is the reason for the integrals
with two densities in them. The penalty P is of different nature in different cases,
this accounts for the multiple integrals. This suggests that there is not much hope
of finding nicer expressions.

2.4 Case

As example we look at the following case. As input data we use:
T1 = U(180; 234)
H1 = U(50; 150)
T2 = U(120; 156)
H2 = U(50; 150)
L = 30 minutes
K = 45 minutes



Now the optimal value of S1 can be calculated by S∗1 = min (A+ P,B − L) =
min (180 + 45; 234− 30) = 204 resulting in E(W1) = 5.33. The same for S2.
First for the case neglecting the penalty at the first port. Minimum value for S2

can be derived easily S2 = 180 + 50 + 120 = 350, and also the maximum value
S2 = 234+150+156 = 540. The arrival time on port 2 is a sum of three uniform
distributed variables. If we assume that the sum of three uniform variables has
a normal distribution, then the arrival time on port 2 is normal distributed with

µ = 350 + 0.5 ∗ (190) = 445 and σ =
√

(54)2

12 + (100)2

12 + (36)2

12 = 34.4. Solving the

formula of the first stage for a normal distribution gives S∗2 = 438.

These results can be checked by a numerical simulation of 70,000 realisations
of trips with these parameters. Figure 3 shows that the minimum delay is reached
(indeed) around 204. Also it can be seen how sensitive the outcome is for a choice
of S1: 10 minutes off, gives 5 minutes extra delay.

Simulating the second stage without penalty results in the outcome as shown
in Fig. 4. The optimal value of 438 is confirmed, however the graph is rather flat
around the optimum, and the sensitivity of the delay on the window is low.

From the simulation of the second stage with penalty at the first stage also
comes that taking the penalty into account the optimal S2∗ becomes 441, as
depicted in Fig. 5.

Fig. 3. Simulated optimum S1.



Fig. 4. Simulated optimum S2 without penalty.

3 Recognizing time windows in data

In practice often not all data and/or the precise process is known. For example
only GPS-data is available and this information is used in planning. Then it
would be nice to understand where the interactions and (possible) correlations
in data comes from. In this section we look at the case were we only see the
arrival and departure times of a barge (for example from GPS or AIS data) and
want to understand the underlying process better by analysing this data. We
want, for example, to be able to predict the arrival time of the barges at some
(final) stop. For this we can try to predict the separate steps in the chain, here
for example the transportation times and the handling times. But what if there
are dependencies, for example caused by waiting times that are depending on
whether some time slot is met by arrival, as explained in the previous section.

3.1 Analysis

To get some idea on this, we simulated the process as defined in the previous
section for four cases:

1. No time slot; a barge is handled on arrival at each port;
2. Optimal time slots chosen; as defined in the previous section;
3. Time slots are chosen around the expected arrival time; the planner puts the

time slot symmetrically around the expected arrival time;
4. No optimisation; the planner places the start of the time slot at the earliest

arrival time.



Fig. 5. Simulated optimum S2 with penalty.

As numerical input we take (in minutes):
T1 = U(180; 234)
H1 = U(50; 150)
T2 = U(120; 156)
H2 = U(50; 150)
L = 30
K = 30

This gives a minimal lead time of 400 minutes and a maximum lead time of
690 (plus 60 minutes of penalties) minutes. For each of the four cases we simu-
lated 5,000 realisations, were only the arrival and departure times were reported.
From these times the two transportation and two handling times were calculated,
as depicted in Fig. 6. Again for each of the four cases, the correlation between
the four arrival/departure times and the average total lead time were derived.
For each correlation value also the p-value was calculated to test whether the
correlation is significantly different from zero. The results are presented in Table
1 until Table 5.

Table 1. Correlation in the case ’No time slot’; p-value between brackets.

T1 H1 T2

H1 0.028 (0.052)
T2 -0.018 (0.201) 0.001 (0.961)
H2 0.022 (0.122) -0.005 (0.750) -0.001 (0.952)



Table 2. Correlation in the case ’Optimal time slot’; p-value between brackets.

T1 H1 T2

H1 -0.210 (0.000)
T2 0.004 (0.787) 0.003 (0.850)
H2 -0.008 (0.559) -0.056 (0.000) -0.005 (0.741)

Table 3. Correlation in the case ’Time slots around the expected arrival time’; p-value
between brackets.

T1 H1 T2

H1 0.216 (0.000)
T2 0.008 (0.562) -0.012 (0.406)
H2 0.047 (0.000) 0.063 (0.000) -0.009 (0.518)

Table 4. Correlation in the case ’Not optimised’; p-value between brackets.

T1 H1 T2

H1 0.382 (0.000)
T2 -0.007 (0.635) -0.011 (0.431)
H2 0.171 (0.000) 0.232 (0.000) 0.031 (0.0278)

Table 5. Total process time of the four cases.

Case Total time

1 545
2 567
3 572
4 581



Fig. 6. Process

There are some observations we can make:

1. In the case ’No time slots’ there is no correlation between the transportation
and handling times.

2. In the case ’No optimisation’ there exist: positive correlation between (T1,
H1), positive correlation between (T1, H2) and positive correlation between
(H1, H2), all by the penalty. There also is a (small but significant) correlation
between (T2,H2).

3. In the case ’Time slots are chosen around the expected arrival time’, the
correlations become lower; the effect of the penalty is less than in the not
optimised case.

4. In the case ’Optimal time slots chosen’, the correlation between (T1, H2)
disappear (no delay propagation anymore), the two other relations that had
a positive correlation (T1,H1) and (H1,H2) become negative. This means
that longer delays do not cause the big penalty anymore, but being early
(lower arrival time) leads to small waiting times.

3.2 Limitations

Up to here we assumed that the planning and realisations are independent.
However in practice people are going to react on realisations. For example:

– If the barge is early, the captain can decide to slow down and save fuel. This
could lead to a shift in the transportation time distribution and from the
optimised case to the ‘time slots around expected arrival time’ case.

– If the barge had delay in the first part (transportation, penalty and/or han-
dling) the captain could decide to go faster. This again leads to a shift in the
transportation time distribution and potentially a decrease in the correlation
between (T1, T2) and (H1, T2).



4 Conclusions

This paper looked at a delivery chain in logistics, where a barge has to visit two
ports and was faced by delivery time slot in which the barge has to arrive. We
looked at two issues; first how can the time slot be chosen optimally and secondly
how can time slots with penalty for untimely arrival be recognised in travel data.
For the former an optimisation framework was given to derive the optimal time
slots at the first and second stage with various options for penalty functions in
case of a not timely arrival and various. For certain distribution functions of the
handling and transportation times an explicit expression was derived. Also for
the most complicated case, the second stage with propagation of the penalty of
the first stage, an expression was derived. For the latter some insight was given
to recognise these time slot constructions from correlation values of travel and
handling times. Four cases were distinguished where each case showed specific
characteristics in the correlation values. The characteristics could, in practice,
be compensated by the interaction of humans.
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