Skip to main content

Simulating Storage Policies for an Automated Grid-Based Warehouse System

  • Conference paper
  • First Online:
Computational Logistics (ICCL 2017)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 10572))

Included in the following conference series:

Abstract

Robotic fulfillment systems are becoming commonplace at warehouses across the world. High-density, grid-based storage systems in particular, such as the AutoStore system, are being used in a variety of contexts, but very little literature exists to guide decision makers in picking the right policies for operating such a system. Storage policies can have a large effect on the efficiency and storage capacity of robotic fulfillment systems. We therefore introduce a discrete event simulation for grid-based storage and examine input storage policies under a couple of storage scenarios. Our simulation provides decision makers with an easy way of testing policies before implementing them in a real system, and shows that selecting the correct policy can lead to up to a 7% input performance improvement, and 60% better box utilization.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Amazon Robotics (2017). www.amazonrobotics.com (last access May 31, 2017)

  2. AutoStore (2017). www.autostoresystem.com (last access May 15, 2017)

  3. Azadeh, K., de Koster, M., Roy, D.: Robotized warehouse systems: Developments and research opportunities. Social Science Research Network (2017)

    Google Scholar 

  4. Chang, D.T., Wen, U.P., Lin, J.T.: The impact of acceleration/deceleration on travel-time models for automated storage/retrieval systems. IIE Transactions 27(1), 108–111 (1995)

    Article  Google Scholar 

  5. CycloneCarrier (2017). www.swisslog.com/CycloneCarrier (last access June 06, 2017)

  6. De Koster, R., Le-Duc, T., Roodbergen, K.J.: Design and control of warehouse order picking: A literature review. European Journal of Operational Research 182(2), 481–501 (2007)

    Article  MATH  Google Scholar 

  7. De Koster, R.B., Le-Duc, T., Yugang, Y.: Optimal storage rack design for a 3-dimensional compact as/rs. International Journal of Production Research 46(6), 1495–1514 (2008)

    Article  MATH  Google Scholar 

  8. Egbelu, P.J.: Framework for dynamic positioning of storage/retrieval machines in an automated storage/retrieval system. The International Journal of Production Research 29(1), 17–37 (1991)

    Article  Google Scholar 

  9. Gagliardi, J.P., Renaud, J., Ruiz, A.: Models for automated storage and retrieval systems: a literature review. International Journal of Production Research 50(24), 7110–7125 (2012)

    Article  Google Scholar 

  10. Gu, J., Goetschalckx, M., McGinnis, L.F.: Research on warehouse operation: A comprehensive review. European Journal of Operational Research 177(1), 1–21 (2007)

    Article  MATH  Google Scholar 

  11. Gu, J., Goetschalckx, M., McGinnis, L.F.: Research on warehouse design and performance evaluation: A comprehensive review. European Journal of Operational Research 203(3), 539–549 (2010)

    Article  MATH  Google Scholar 

  12. Hart, P.E., Nilsson, N.J., Raphael, B.: A formal basis for the heuristic determination of minimum cost paths. IEEE transactions on Systems Science and Cybernetics 4(2), 100–107 (1968)

    Article  Google Scholar 

  13. Hompel, M., Schmidt, T.: Warehouse Management: Automatisierung und Organisation von Lager-und Kommissioniersystemen. Springer-Verlag (2013)

    Google Scholar 

  14. Lamballais, T., Roy, D., De Koster, M.: Estimating performance in a robotic mobile fulfillment system. European Journal of Operational Research 256(3), 976–990 (2017)

    Article  Google Scholar 

  15. Law, A.: Simulation Modeling and Analysis, 5th edn. McGraw-Hill (2014)

    Google Scholar 

  16. Merschformann, M., Xie, L., Erdmann, D.: Path planning for robotic mobile fulllment systems (2017)

    Google Scholar 

  17. Mirzaei, M., De Koster, R.B., Zaerpour, N.: Modelling load retrievals in puzzle-based storage systems. International Journal of Production Research, 1–13 (2017)

    Google Scholar 

  18. Roodbergen, K.J., Vis, I.F.: A survey of literature on automated storage and retrieval systems. European Journal of Operational Research 194(2), 343–362 (2009)

    Article  MATH  Google Scholar 

  19. Sari, Z., Saygin, C., Ghouali, N.: Travel-time models for flow-rack automated storage and retrieval systems. The International Journal of Advanced Manufacturing Technology 25(9), 979–987 (2005)

    Article  Google Scholar 

  20. Sari, Z., Saygin, C., Ghouali, N.: The application of discrete event simulation and system dynamics in the logistics and supply chain context. Decision Support Systems 52(4), 802–815 (2012)

    Article  Google Scholar 

  21. Tompkins, J.A., White, J.A., Bozer, Y.A., Tanchoco, J.M.A.: Facilities planning. John Wiley & Sons (2010)

    Google Scholar 

  22. Tornado (2017). www.swisslog.com/tornado (last access June 6, 2017)

  23. Wen, U., Chang, D., Chen, S.: The impact of acceleration/deceleration on travel-time models in class-based automated S/R systems. IIE Trans. 33, 599–608 (2001)

    Google Scholar 

  24. Yu, Y., De Koster, M.: Designing an optimal turnover-based storage rack for a 3d compact automated storage and retrieval system. International Journal of Production Research 47(6), 1551–1571 (2009)

    Article  MATH  Google Scholar 

  25. Zaerpour, N., Yu, Y., de Koster, R.B.: Small is beautiful: A framework for evaluating and optimizing live-cube compact storage systems. Transportation Science (2015)

    Google Scholar 

  26. Zou, B., de Koster, M., Xu, X.: Evaluating dedicated and shared storage policies in robot-based compact storage and retrieval systems. Social Science Research Network (2016)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christoph Weskamp .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Beckschäfer, M., Malberg, S., Tierney, K., Weskamp, C. (2017). Simulating Storage Policies for an Automated Grid-Based Warehouse System. In: Bektaş, T., Coniglio, S., Martinez-Sykora, A., Voß, S. (eds) Computational Logistics. ICCL 2017. Lecture Notes in Computer Science(), vol 10572. Springer, Cham. https://doi.org/10.1007/978-3-319-68496-3_31

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-68496-3_31

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-68495-6

  • Online ISBN: 978-3-319-68496-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics