Skip to main content

A Dynamic Network Flow Model for Interdependent Infrastructure and Supply Chain Networks with Uncertain Asset Operability

  • Conference paper
  • First Online:
Computational Logistics (ICCL 2017)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 10572))

Included in the following conference series:

Abstract

In globally integrated supply chain networks, initially local disruptions can quickly escalate to major problems due to complex interdependencies and cascading failure. This paper is particularly concerned with the role of infrastructure failure causing or exacerbating such cascading effects in supply chain networks. To improve the understanding of infrastructure and supply chain interdependency, we propose a novel modelling approach that captures the dynamics of both asset operability and network flows. The method uses a Markov process to generate operability scenarios and a multistage stochastic linear program to assign dynamic flows and optimise network capacities. The model takes into account different mechanisms of cascading failure, namely failure propagation, delay of recovery and unavailability of production inputs. A numeric example demonstrates how the method can be used to assess and optimises the resilience of a global supply chain against multiple hazards and infrastructure failure.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Norrman, A., Jansson, U.: Ericsson’s proactive supply chain risk management approach after a serious sub-supplier accident. Int. J. Phys. Distrib. Logist. Manag. 34, 434–456 (2004)

    Article  Google Scholar 

  2. Matsuo, H.: Implications of the Tohoku earthquake for Toyota’s coordination mechanism: Supply chain disruption of automotive semiconductors. Int. J. Prod. Econ. 161, 217–227 (2015)

    Article  Google Scholar 

  3. The City of New York (2013) A Stronger, More Resilient New York. http://www.nyc.gov/html/sirr/html/report/report.shtml (accessed May 11, 2017)

  4. Koetse, M.J., Rietveld, P.: The impact of climate change and weather on transport: An overview of empirical findings. Transp. Res. Part D Transp. Environ. 14, 205–221 (2009)

    Article  Google Scholar 

  5. van Vliet, M.T.H., Yearsley, J.R., Ludwig, F., Vögele, S., Lettenmaier, D.P., Kabat, P.: Vulnerability of US and European electricity supply to climate change. Nat. Clim. Chang. 2, 676–681 (2012)

    Article  Google Scholar 

  6. Geunes, J., Pardalos, P.M.: Network Optimization in Supply Chain Management and Financial Engineering: An Annotated Bibliography. Networks 42, 66–84 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  7. Wilson, M.C.: The impact of transportation disruptions on supply chain performance. Transp. Res. Part E Logist. Transp. Rev. 43, 295–320 (2007)

    Article  Google Scholar 

  8. Geng, L., Xiao, R., Xu, X.: Research on MAS-Based Supply Chain Resilience and Its Self-Organized Criticality. Discret. Dyn. Nat. Soc. 2014, 1–14 (2014)

    Article  Google Scholar 

  9. Gillen, D., Hasheminia, H.: Measuring reliability of transportation networks using snapshots of movements in the network – An analytical and empirical study. Transp. Res. Part B Methodol. 93, 808–824 (2016)

    Article  Google Scholar 

  10. Nagurney, A., Daniele, P., Shukla, S.: A supply chain network game theory model of cybersecurity investments with nonlinear budget constraints. Ann. Oper. Res. 248, 405–427 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  11. Heckmann, I., Comes, T., Nickel, S.: A critical review on supply chain risk - Definition, measure and modeling. Omega 52, 119–132 (2015)

    Article  Google Scholar 

  12. Tukamuhabwa, B.R., Stevenson, M., Busby, J., Zorzini, M.: Supply chain resilience: definition, review and theoretical foundations for further study. Int. J. Prod. Res. 53, 5592–5623 (2015)

    Article  Google Scholar 

  13. Kamalahmadi, M., Mellat Parast, M.: A review of the literature on the principles of enterprise and supply chain resilience: Major findings and directions for future research. Int. J. Prod. Econ. 171, 116–133 (2016)

    Article  Google Scholar 

  14. Ahuja, R.K., Magnanti, T.L., Orlin, J.B.: Network Flows: Theory, Algorithms, and Applications. Prentice Hall (1993)

    Google Scholar 

  15. Snyder, L.V., Scaparra, M.P., Daskin, M.S., Church, R.L.: Planning for disruptions in supply chain networks. In: TutORials Oper Res INFORMS, pp. 234–257 (2006)

    Google Scholar 

  16. Glockner, G.D., Nemhauser, G.L.: A dynamic network flow problem with uncertain arc capacities: Formulation and problem structure. Oper. Res. 48, 233–242 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  17. Tsiakis, P., Shah, N., Pantelides, C.C.: Design of Multi-echelon Supply Chain Networks under Demand Uncertainty. Ind. Eng. Chem. Res. 40, 3585–3604 (2001). doi:10.1021/ie0100030

    Article  Google Scholar 

  18. Lu, M., Huang, S., Shen, Z.J.M.: Product substitution and dual sourcing under random supply failures. Transp. Res. Part B Methodol. 45, 1251–1265 (2011)

    Article  Google Scholar 

  19. Sadghiani, N.S., Torabi, S.A., Sahebjamnia, N.: Retail supply chain network design under operational and disruption risks. Transp. Res. Part E Logist. Transp. Rev. 75, 95–114 (2015)

    Article  Google Scholar 

  20. Xu, D., Chen, Z., Yang, L.: Scenario tree generation approaches using K-means and LP moment matching methods. J. Comput. Appl. Math. 236, 4561–4579 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  21. King, A., Wallace, S.: Modeling with Stochastic Programming. Springer (2012)

    Google Scholar 

  22. Rausand, M., Høyland, A.: System reliability theory: models, statistical methods, and applications, 2nd ed. John Wiley & Sons (2004)

    Google Scholar 

  23. Rahnamay-Naeini, M., Hayat, M.M.: Cascading Failures in Interdependent Infrastructures: An Interdependent Markov-Chain Approach. IEEE Trans. Smart Grid 7, 1997–2006 (2016)

    Article  Google Scholar 

  24. Son, K.S., Kim, D.H., Kim, C.H., Kang, H.G.: Study on the systematic approach of Markov modeling for dependability analysis of complex fault-tolerant features with voting logics. Reliab. Eng. Syst. Saf. 150, 44–57 (2016)

    Article  Google Scholar 

  25. Lee II, E.E., Mitchell, J.E., Wallace, W.A.: Restoration of Services in Interdependent Infrastructure Systems: A Network Flows Approach. IEEE Trans. Syst. Man, Cybern. Part C Appl. Rev. 37, 1303–1317 (2007)

    Article  Google Scholar 

  26. Holden, R., Val, D.V., Burkhard, R., Nodwell, S.: A network flow model for interdependent infrastructures at the local scale. Saf. Sci. 53, 51–60 (2013)

    Article  Google Scholar 

  27. Sen, A., Balakrishnan, N.: Convolution of geometrics and a reliability problem. Stat. Probab. Lett. 43, 421–426 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  28. Cadwallader, L.C.: Review of Maintenance and Repair Times for Components in Technological Facilities Components in Technological Facilities (2012). https://inldigitallibrary.inl.gov/sites/sti/sti/5554588.pdf (accessed May 11, 2017)

  29. Pukite, J., Pukite, P.: Modeling for Reliability Analysis: Markov Modeling for Reliability, Maintainability, Safety, and Supportability Analyses of Complex Systems. Wiley (1998)

    Google Scholar 

  30. Smith, D.J.: Reliability, Maintainability and Risk: Practical Methods for Engineers, 8th ed. Butterworth-Heinemann (2011)

    Google Scholar 

  31. Willems, S.P.: Real-World Multiechelon Supply Chains Used for Inventory Optimization. Manuf. Serv. Oper. Manag. 10, 19–23 (2008)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nils Goldbeck .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Goldbeck, N., Angeloudis, P., Ochieng, W.Y. (2017). A Dynamic Network Flow Model for Interdependent Infrastructure and Supply Chain Networks with Uncertain Asset Operability . In: Bektaş, T., Coniglio, S., Martinez-Sykora, A., Voß, S. (eds) Computational Logistics. ICCL 2017. Lecture Notes in Computer Science(), vol 10572. Springer, Cham. https://doi.org/10.1007/978-3-319-68496-3_34

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-68496-3_34

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-68495-6

  • Online ISBN: 978-3-319-68496-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics