Skip to main content

Part of the book series: Lecture Notes in Computer Science ((LNPSE,volume 10598))

Abstract

Train control technology enhances the safety and efficiency of railroad operation by safeguarding the motion of trains to prevent them from leaving designated areas of operation and colliding with other trains. It is crucial for safety that the trains engage their brakes early enough in order to make sure they never leave the safe part of the track. Efficiency considerations, however, also require that the train does not brake too soon, which would limit operational suitability. It is surprisingly subtle to reach the right tradeoffs and identify the right control conditions that guarantee safe motion without being overly conservative.

In pursuit of an answer, we develop a hybrid system model with discrete control decisions for acceleration, brakes, and with continuous differential equations for their physical effects on the motion of the train. The resulting hybrid system model is systematically derived from the Federal Railway Administration model for flat terrain by conservatively neglecting minor forces.

The main contribution of this paper is the identification of a controller with control constraints that we formally verify to always guarantee collision freedom in the FRA model. The safe braking behavior of a train is influenced not only by the train configuration (e.g., train length and mass), but also by physical characteristics (e.g., brake pressure propagation and reaction time). We formalize train control safety properties in differential dynamic logic and prove the correctness of the train control models in the theorem prover KeYmaera X.

This material is based upon work supported by Siemens Corporate Technology.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Abrial, J.: The B-book - Assigning Programs to Meanings. Cambridge University Press, New York (2005)

    MATH  Google Scholar 

  2. Ahmad, H.A.: Dynamic braking control for accurate train braking distance estimation under different operating conditions (2013)

    Google Scholar 

  3. Bohrer, B., Rahli, V., Vukotic, I., Völp, M., Platzer, A.: Formally verified differential dynamic logic. In: Bertot, Y., Vafeiadis, V. (eds.) Certified Programs and Proofs - 6th ACM SIGPLAN Conference, Cp. 2017, Paris, France, January 16–17, 2017, pp. 208–221. ACM (2017)

    Google Scholar 

  4. Bonacchi, A., Fantechi, A., Bacherini, S., Tempestini, M., Cipriani, L.: Validation of railway interlocking systems by formal verification, a case study. In: Counsell, S., Núñez, M. (eds.) SEFM 2013. LNCS, vol. 8368, pp. 237–252. Springer, Cham (2014). doi:10.1007/978-3-319-05032-4_18

    Chapter  Google Scholar 

  5. Borälv, A.: Case study: Formal verification of a computerized railway interlocking. Formal Aspects Comput. 10(4), 338–360 (1998)

    Article  MATH  Google Scholar 

  6. Brossaeu, J., Ede, B.M.: Development of an adaptive predictive braking enforcement algorithm. Technical report FRA/DOT/ORD-9/13, Federal Railroad Administration (2009)

    Google Scholar 

  7. Cimatti, A., Corvino, R., Lazzaro, A., Narasamdya, I., Rizzo, T., Roveri, M., Sanseviero, A., Tchaltsev, A.: Formal verification and validation of ERTMS industrial railway train spacing system. In: Madhusudan, P., Seshia, S.A. (eds.) CAV 2012. LNCS, vol. 7358, pp. 378–393. Springer, Heidelberg (2012). doi:10.1007/978-3-642-31424-7_29

    Chapter  Google Scholar 

  8. Cimatti, A., Giunchiglia, F., Mongardi, G., Romano, D., Torielli, F., Traverso, P.: Model checking safety critical software with spin: an application to a railway interlocking system. In: Ehrenberger, W. (ed.) SAFECOMP 1998. LNCS, vol. 1516, pp. 284–293. Springer, Heidelberg (1998). doi:10.1007/3-540-49646-7_22

    Chapter  Google Scholar 

  9. Damm, W., Hungar, H., Olderog, E.-R.: On the verification of cooperating traffic agents. In: Boer, F.S., Bonsangue, M.M., Graf, S., Roever, W.-P. (eds.) FMCO 2003. LNCS, vol. 3188, pp. 77–110. Springer, Heidelberg (2004). doi:10.1007/978-3-540-30101-1_4

    Chapter  Google Scholar 

  10. Essamé, D., Dollé, D.: B in large-scale projects: the Canarsie line CBTC experience. In: Julliand, J., Kouchnarenko, O. (eds.) B 2007. LNCS, vol. 4355, pp. 252–254. Springer, Heidelberg (2006). doi:10.1007/11955757_21

    Chapter  Google Scholar 

  11. Falampin, J., Le-Dang, H., Leuschel, M., Mokrani, M., Plagge, D.: Improving railway data validation with ProB. In: Romanovsky, A., Thomas, M. (eds.) Industrial Deployment of System Engineering Methods, pp. 27–43. Springer, Berlin (2013)

    Chapter  Google Scholar 

  12. Ferrari, A., Fantechi, A., Magnani, G., Grasso, D., Tempestini, M.: The Metrô Rio case study. Sci. Comput. Program. 78(7), 828–842 (2013)

    Article  Google Scholar 

  13. Fulton, N., Mitsch, S., Quesel, J.-D., Völp, M., Platzer, A.: KeYmaera X: an axiomatic tactical theorem prover for hybrid systems. In: Felty, A.P., Middeldorp, A. (eds.) CADE 2015. LNCS, vol. 9195, pp. 527–538. Springer, Cham (2015). doi:10.1007/978-3-319-21401-6_36

    Chapter  Google Scholar 

  14. Haxthausen, A.E., Peleska, J., Kinder, S.: A formal approach for the construction and verification of railway control systems. Formal Asp. Comput. 23(2), 191–219 (2011)

    Article  MATH  Google Scholar 

  15. Heitmeyer, C.L., Lynch, N.A.: The generalized railroad crossing: a case study in formal verification of real-time systems. In: RTSS, pp. 120–131. IEEE Computer Society (1994)

    Google Scholar 

  16. Hong, L.V., Haxthausen, A.E., Peleska, J.: Formal modelling and verification of interlocking systems featuring sequential release. Sci. Comput. Program. 133, 91–115 (2017)

    Article  Google Scholar 

  17. Iliasov, A., Romanovsky, A.: Formal analysis of railway signalling data. In: HASE 2016, pp. 70–77. IEEE Computer Society (2016)

    Google Scholar 

  18. Ortmeier, F., Reif, W., Schellhorn, G.: Formal safety analysis of a radio-based railroad crossing using deductive cause-consequence analysis (DCCA). In: Cin, M., Kaâniche, M., Pataricza, A. (eds.) EDCC 2005. LNCS, vol. 3463, pp. 210–224. Springer, Heidelberg (2005). doi:10.1007/11408901_15

    Chapter  Google Scholar 

  19. Platzer, A.: Differential dynamic logic for hybrid systems. J. Autom. Reas. 41(2), 143–189 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  20. Platzer, A.: Logical Analysis of Hybrid Systems: Proving Theorems for Complex Dynamics. Springer, Heidelberg (2010)

    Book  MATH  Google Scholar 

  21. Platzer, A.: Logics of dynamical systems. In: LICS, pp. 13–24. IEEE (2012)

    Google Scholar 

  22. Platzer, A.: A complete uniform substitution calculus for differential dynamic logic. J. Autom. Reas. 59(2), 219–265 (2017)

    Article  MathSciNet  Google Scholar 

  23. Platzer, A., Quesel, J.-D.: European train control system: a case study in formal verification. In: Breitman, K., Cavalcanti, A. (eds.) ICFEM 2009. LNCS, vol. 5885, pp. 246–265. Springer, Heidelberg (2009). doi:10.1007/978-3-642-10373-5_13

    Chapter  Google Scholar 

  24. Polivka, A., Ede, B.M., Drapa, J.: North american joint positive train control project. Technical report DOT/FRA/ORD-09/04 (2009)

    Google Scholar 

  25. Zou, L., Lv, J., Wang, S., Zhan, N., Tang, T., Yuan, L., Liu, Y.: Verifying chinese train control system under a combined scenario by theorem proving. In: Cohen, E., Rybalchenko, A. (eds.) VSTTE 2013. LNCS, vol. 8164, pp. 262–280. Springer, Heidelberg (2014). doi:10.1007/978-3-642-54108-7_14

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stefan Mitsch .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Mitsch, S., Gario, M., Budnik, C.J., Golm, M., Platzer, A. (2017). Formal Verification of Train Control with Air Pressure Brakes. In: Fantechi, A., Lecomte, T., Romanovsky, A. (eds) Reliability, Safety, and Security of Railway Systems. Modelling, Analysis, Verification, and Certification. RSSRail 2017. Lecture Notes in Computer Science(), vol 10598. Springer, Cham. https://doi.org/10.1007/978-3-319-68499-4_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-68499-4_12

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-68498-7

  • Online ISBN: 978-3-319-68499-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics