Abstract
Train control technology enhances the safety and efficiency of railroad operation by safeguarding the motion of trains to prevent them from leaving designated areas of operation and colliding with other trains. It is crucial for safety that the trains engage their brakes early enough in order to make sure they never leave the safe part of the track. Efficiency considerations, however, also require that the train does not brake too soon, which would limit operational suitability. It is surprisingly subtle to reach the right tradeoffs and identify the right control conditions that guarantee safe motion without being overly conservative.
In pursuit of an answer, we develop a hybrid system model with discrete control decisions for acceleration, brakes, and with continuous differential equations for their physical effects on the motion of the train. The resulting hybrid system model is systematically derived from the Federal Railway Administration model for flat terrain by conservatively neglecting minor forces.
The main contribution of this paper is the identification of a controller with control constraints that we formally verify to always guarantee collision freedom in the FRA model. The safe braking behavior of a train is influenced not only by the train configuration (e.g., train length and mass), but also by physical characteristics (e.g., brake pressure propagation and reaction time). We formalize train control safety properties in differential dynamic logic and prove the correctness of the train control models in the theorem prover KeYmaera X.
This material is based upon work supported by Siemens Corporate Technology.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Abrial, J.: The B-book - Assigning Programs to Meanings. Cambridge University Press, New York (2005)
Ahmad, H.A.: Dynamic braking control for accurate train braking distance estimation under different operating conditions (2013)
Bohrer, B., Rahli, V., Vukotic, I., Völp, M., Platzer, A.: Formally verified differential dynamic logic. In: Bertot, Y., Vafeiadis, V. (eds.) Certified Programs and Proofs - 6th ACM SIGPLAN Conference, Cp. 2017, Paris, France, January 16–17, 2017, pp. 208–221. ACM (2017)
Bonacchi, A., Fantechi, A., Bacherini, S., Tempestini, M., Cipriani, L.: Validation of railway interlocking systems by formal verification, a case study. In: Counsell, S., Núñez, M. (eds.) SEFM 2013. LNCS, vol. 8368, pp. 237–252. Springer, Cham (2014). doi:10.1007/978-3-319-05032-4_18
Borälv, A.: Case study: Formal verification of a computerized railway interlocking. Formal Aspects Comput. 10(4), 338–360 (1998)
Brossaeu, J., Ede, B.M.: Development of an adaptive predictive braking enforcement algorithm. Technical report FRA/DOT/ORD-9/13, Federal Railroad Administration (2009)
Cimatti, A., Corvino, R., Lazzaro, A., Narasamdya, I., Rizzo, T., Roveri, M., Sanseviero, A., Tchaltsev, A.: Formal verification and validation of ERTMS industrial railway train spacing system. In: Madhusudan, P., Seshia, S.A. (eds.) CAV 2012. LNCS, vol. 7358, pp. 378–393. Springer, Heidelberg (2012). doi:10.1007/978-3-642-31424-7_29
Cimatti, A., Giunchiglia, F., Mongardi, G., Romano, D., Torielli, F., Traverso, P.: Model checking safety critical software with spin: an application to a railway interlocking system. In: Ehrenberger, W. (ed.) SAFECOMP 1998. LNCS, vol. 1516, pp. 284–293. Springer, Heidelberg (1998). doi:10.1007/3-540-49646-7_22
Damm, W., Hungar, H., Olderog, E.-R.: On the verification of cooperating traffic agents. In: Boer, F.S., Bonsangue, M.M., Graf, S., Roever, W.-P. (eds.) FMCO 2003. LNCS, vol. 3188, pp. 77–110. Springer, Heidelberg (2004). doi:10.1007/978-3-540-30101-1_4
Essamé, D., Dollé, D.: B in large-scale projects: the Canarsie line CBTC experience. In: Julliand, J., Kouchnarenko, O. (eds.) B 2007. LNCS, vol. 4355, pp. 252–254. Springer, Heidelberg (2006). doi:10.1007/11955757_21
Falampin, J., Le-Dang, H., Leuschel, M., Mokrani, M., Plagge, D.: Improving railway data validation with ProB. In: Romanovsky, A., Thomas, M. (eds.) Industrial Deployment of System Engineering Methods, pp. 27–43. Springer, Berlin (2013)
Ferrari, A., Fantechi, A., Magnani, G., Grasso, D., Tempestini, M.: The Metrô Rio case study. Sci. Comput. Program. 78(7), 828–842 (2013)
Fulton, N., Mitsch, S., Quesel, J.-D., Völp, M., Platzer, A.: KeYmaera X: an axiomatic tactical theorem prover for hybrid systems. In: Felty, A.P., Middeldorp, A. (eds.) CADE 2015. LNCS, vol. 9195, pp. 527–538. Springer, Cham (2015). doi:10.1007/978-3-319-21401-6_36
Haxthausen, A.E., Peleska, J., Kinder, S.: A formal approach for the construction and verification of railway control systems. Formal Asp. Comput. 23(2), 191–219 (2011)
Heitmeyer, C.L., Lynch, N.A.: The generalized railroad crossing: a case study in formal verification of real-time systems. In: RTSS, pp. 120–131. IEEE Computer Society (1994)
Hong, L.V., Haxthausen, A.E., Peleska, J.: Formal modelling and verification of interlocking systems featuring sequential release. Sci. Comput. Program. 133, 91–115 (2017)
Iliasov, A., Romanovsky, A.: Formal analysis of railway signalling data. In: HASE 2016, pp. 70–77. IEEE Computer Society (2016)
Ortmeier, F., Reif, W., Schellhorn, G.: Formal safety analysis of a radio-based railroad crossing using deductive cause-consequence analysis (DCCA). In: Cin, M., Kaâniche, M., Pataricza, A. (eds.) EDCC 2005. LNCS, vol. 3463, pp. 210–224. Springer, Heidelberg (2005). doi:10.1007/11408901_15
Platzer, A.: Differential dynamic logic for hybrid systems. J. Autom. Reas. 41(2), 143–189 (2008)
Platzer, A.: Logical Analysis of Hybrid Systems: Proving Theorems for Complex Dynamics. Springer, Heidelberg (2010)
Platzer, A.: Logics of dynamical systems. In: LICS, pp. 13–24. IEEE (2012)
Platzer, A.: A complete uniform substitution calculus for differential dynamic logic. J. Autom. Reas. 59(2), 219–265 (2017)
Platzer, A., Quesel, J.-D.: European train control system: a case study in formal verification. In: Breitman, K., Cavalcanti, A. (eds.) ICFEM 2009. LNCS, vol. 5885, pp. 246–265. Springer, Heidelberg (2009). doi:10.1007/978-3-642-10373-5_13
Polivka, A., Ede, B.M., Drapa, J.: North american joint positive train control project. Technical report DOT/FRA/ORD-09/04 (2009)
Zou, L., Lv, J., Wang, S., Zhan, N., Tang, T., Yuan, L., Liu, Y.: Verifying chinese train control system under a combined scenario by theorem proving. In: Cohen, E., Rybalchenko, A. (eds.) VSTTE 2013. LNCS, vol. 8164, pp. 262–280. Springer, Heidelberg (2014). doi:10.1007/978-3-642-54108-7_14
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2017 Springer International Publishing AG
About this paper
Cite this paper
Mitsch, S., Gario, M., Budnik, C.J., Golm, M., Platzer, A. (2017). Formal Verification of Train Control with Air Pressure Brakes. In: Fantechi, A., Lecomte, T., Romanovsky, A. (eds) Reliability, Safety, and Security of Railway Systems. Modelling, Analysis, Verification, and Certification. RSSRail 2017. Lecture Notes in Computer Science(), vol 10598. Springer, Cham. https://doi.org/10.1007/978-3-319-68499-4_12
Download citation
DOI: https://doi.org/10.1007/978-3-319-68499-4_12
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-68498-7
Online ISBN: 978-3-319-68499-4
eBook Packages: Computer ScienceComputer Science (R0)