Skip to main content

Evaluation of Traveling Salesman Problem Instance Hardness by Clustering

  • Conference paper
  • First Online:
Proceedings of the Fourth Euro-China Conference on Intelligent Data Analysis and Applications (ECC 2017)

Part of the book series: Advances in Intelligent Systems and Computing ((AISC,volume 682))

Abstract

Traveling salesman problem (TSP) is a well-known NP-hard combinatorial optimization problem. It has been solved by a number of exact and approximate algorithms and serves as a testbed for new heuristic and metaheuristic optimization algorithms. However, it is often not easy to evaluate the hardness (complexity) of a TSP instance. Simple measures such as the number of cities or the minimum (maximum) route length do not capture the internal structure of a TSP instance sufficiently. In this work, we propose a new method for the assessment of TSP instance complexity based on clustering. The new approach is evaluated on a set of randomized TSP instances with different structure and its relation to the performance of a selected metaheuristic TSP solver is studied.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Applegate, D.L., Bixby, R.E., Chvatal, V., Cook, W.J.: The Traveling Salesman Problem: A Computational Study (Princeton Series in Applied Mathematics). Princeton University Press, Princeton (2007)

    Google Scholar 

  2. Arora, S.: Approximation Algorithms for Geometric TSP, pp. 207–221. Springer, Boston (2007). doi:10.1007/0-306-48213-4_5

  3. Bandyopadhyay, S., Saha, S.: Unsupervised Classification: Similarity Measures, Classical and Metaheuristic Approaches, and Applications. SpringerLink: Bücher, Heidelberg (2012). https://books.google.cz/books?id=Vb21R9_rMNoC

  4. Dorigo, M., Stützle, T.: Ant Colony Optimization. MIT Press, Cambridge (2004)

    MATH  Google Scholar 

  5. Engelbrecht, A.: Computational Intelligence: An Introduction, 2nd edn. Wiley, New York (2007)

    Book  Google Scholar 

  6. Everitt, B., Landau, S., Leese, M., Stahl, D.: Cluster Analysis. Wiley Series in Probability and Statistics, Wiley, New York (2011). https://books.google.cz/books?id=w3bE1kqd-48C

  7. Fischetti, M., Lodi, A., Toth, P.: Exact Methods for the Asymmetric Traveling Salesman Problem, pp. 169–205. Springer, Boston (2007). doi:10.1007/0-306-48213-4_4

  8. Hernando, L., Pascual, J.A., Mendiburu, A., Lozano, J.A.: A study on the complexity of TSP instances under the 2-exchange neighbor system. In: 2011 IEEE Symposium on Foundations of Computational Intelligence (FOCI), pp. 15–21, April 2011

    Google Scholar 

  9. Kefi, S., Rokbani, N., Krömer, P., Alimi, A.M.: Ant supervised by PSO and 2-opt algorithm, AS-PSO-2Opt, applied to traveling salesman problem. In: 2016 IEEE International Conference on Systems, Man, and Cybernetics, SMC 2016, Budapest, Hungary, 9–12 October 2016, pp. 4866–4871. IEEE (2016). doi:10.1109/SMC.2016.7844999

  10. Kriegel, H.P., Krüger, P., Sander, J., Zimek, A.: Density-based clustering. Wiley Interdiscip. Rev. Data Min. Knowl. Discov. 1(3), 231–240 (2011). doi:10.1002/widm.30

    Article  Google Scholar 

  11. Krömer, P., Platos, J., Snásel, V.: Traditional and self-adaptive differential evolution for the p-median problem. In: 2nd IEEE International Conference on Cybernetics, CYBCONF 2015, Gdynia, Poland, 24–26 June 2015, pp. 299–304. IEEE (2015). doi:10.1109/CYBConf.2015.7175950

  12. Mihalák, M., Schöngens, M., Šrámek, R., Widmayer, P.: On the complexity of the metric TSP under stability considerations. In: Proceedings of 37th International Conference on Current Trends in Theory and Practice of Computer Science, SOFSEM 2011, pp. 382–393. Springer, Heidelberg (2011). http://dl.acm.org/citation.cfm?id=1946370.1946402

  13. Punnen, A.P.: The traveling salesman problem: applications, formulations and variations. In: Gutin, G., Punnen, A. (eds.) The Traveling Salesman Problem and Its Variations Combinatorial Optimization, vol. 12, pp. 1–28. Springer, Boston (2007). doi:10.1007/0-306-48213-4_1

    Chapter  Google Scholar 

  14. Salkind, N.: Encyclopedia of Measurement and Statistics. SAGE Publications, Upper Saddle River (2006). https://books.google.cz/books?id=HJ91CgAAQBAJ

  15. Stützle, T., Grün, A., Linke, S., Rüttger, M.: A comparison of nature inspired heuristics on the traveling salesman problem, pp. 661–670. Springer, Heidelberg (2000). doi:10.1007/3-540-45356-3_65

  16. Stützle, T., Hoos, H.H.: Analysing the Run-Time Behaviour of Iterated Local Search for the Travelling Salesman Problem, pp. 589–611. Springer, Boston (2002). doi:10.1007/978-1-4615-1507-4_26

Download references

Acknowledgement

This work was supported by the Czech Science Foundation under the grant no. GJ16-25694Y and by the projects SP2017/100 “Parallel processing of Big Data IV” and SP2017/85 “Processing and advanced analysis of bio-medical data II,” of the Student Grant System, VŠB-Technical University of Ostrava.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pavel Krömer .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this paper

Cite this paper

Krömer, P., Platoš, J. (2018). Evaluation of Traveling Salesman Problem Instance Hardness by Clustering. In: Krömer, P., Alba, E., Pan, JS., Snášel, V. (eds) Proceedings of the Fourth Euro-China Conference on Intelligent Data Analysis and Applications. ECC 2017. Advances in Intelligent Systems and Computing, vol 682. Springer, Cham. https://doi.org/10.1007/978-3-319-68527-4_41

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-68527-4_41

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-68526-7

  • Online ISBN: 978-3-319-68527-4

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics