Abstract
Traveling salesman problem (TSP) is a well-known NP-hard combinatorial optimization problem. It has been solved by a number of exact and approximate algorithms and serves as a testbed for new heuristic and metaheuristic optimization algorithms. However, it is often not easy to evaluate the hardness (complexity) of a TSP instance. Simple measures such as the number of cities or the minimum (maximum) route length do not capture the internal structure of a TSP instance sufficiently. In this work, we propose a new method for the assessment of TSP instance complexity based on clustering. The new approach is evaluated on a set of randomized TSP instances with different structure and its relation to the performance of a selected metaheuristic TSP solver is studied.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Applegate, D.L., Bixby, R.E., Chvatal, V., Cook, W.J.: The Traveling Salesman Problem: A Computational Study (Princeton Series in Applied Mathematics). Princeton University Press, Princeton (2007)
Arora, S.: Approximation Algorithms for Geometric TSP, pp. 207–221. Springer, Boston (2007). doi:10.1007/0-306-48213-4_5
Bandyopadhyay, S., Saha, S.: Unsupervised Classification: Similarity Measures, Classical and Metaheuristic Approaches, and Applications. SpringerLink: Bücher, Heidelberg (2012). https://books.google.cz/books?id=Vb21R9_rMNoC
Dorigo, M., Stützle, T.: Ant Colony Optimization. MIT Press, Cambridge (2004)
Engelbrecht, A.: Computational Intelligence: An Introduction, 2nd edn. Wiley, New York (2007)
Everitt, B., Landau, S., Leese, M., Stahl, D.: Cluster Analysis. Wiley Series in Probability and Statistics, Wiley, New York (2011). https://books.google.cz/books?id=w3bE1kqd-48C
Fischetti, M., Lodi, A., Toth, P.: Exact Methods for the Asymmetric Traveling Salesman Problem, pp. 169–205. Springer, Boston (2007). doi:10.1007/0-306-48213-4_4
Hernando, L., Pascual, J.A., Mendiburu, A., Lozano, J.A.: A study on the complexity of TSP instances under the 2-exchange neighbor system. In: 2011 IEEE Symposium on Foundations of Computational Intelligence (FOCI), pp. 15–21, April 2011
Kefi, S., Rokbani, N., Krömer, P., Alimi, A.M.: Ant supervised by PSO and 2-opt algorithm, AS-PSO-2Opt, applied to traveling salesman problem. In: 2016 IEEE International Conference on Systems, Man, and Cybernetics, SMC 2016, Budapest, Hungary, 9–12 October 2016, pp. 4866–4871. IEEE (2016). doi:10.1109/SMC.2016.7844999
Kriegel, H.P., Krüger, P., Sander, J., Zimek, A.: Density-based clustering. Wiley Interdiscip. Rev. Data Min. Knowl. Discov. 1(3), 231–240 (2011). doi:10.1002/widm.30
Krömer, P., Platos, J., Snásel, V.: Traditional and self-adaptive differential evolution for the p-median problem. In: 2nd IEEE International Conference on Cybernetics, CYBCONF 2015, Gdynia, Poland, 24–26 June 2015, pp. 299–304. IEEE (2015). doi:10.1109/CYBConf.2015.7175950
Mihalák, M., Schöngens, M., Šrámek, R., Widmayer, P.: On the complexity of the metric TSP under stability considerations. In: Proceedings of 37th International Conference on Current Trends in Theory and Practice of Computer Science, SOFSEM 2011, pp. 382–393. Springer, Heidelberg (2011). http://dl.acm.org/citation.cfm?id=1946370.1946402
Punnen, A.P.: The traveling salesman problem: applications, formulations and variations. In: Gutin, G., Punnen, A. (eds.) The Traveling Salesman Problem and Its Variations Combinatorial Optimization, vol. 12, pp. 1–28. Springer, Boston (2007). doi:10.1007/0-306-48213-4_1
Salkind, N.: Encyclopedia of Measurement and Statistics. SAGE Publications, Upper Saddle River (2006). https://books.google.cz/books?id=HJ91CgAAQBAJ
Stützle, T., Grün, A., Linke, S., Rüttger, M.: A comparison of nature inspired heuristics on the traveling salesman problem, pp. 661–670. Springer, Heidelberg (2000). doi:10.1007/3-540-45356-3_65
Stützle, T., Hoos, H.H.: Analysing the Run-Time Behaviour of Iterated Local Search for the Travelling Salesman Problem, pp. 589–611. Springer, Boston (2002). doi:10.1007/978-1-4615-1507-4_26
Acknowledgement
This work was supported by the Czech Science Foundation under the grant no. GJ16-25694Y and by the projects SP2017/100 “Parallel processing of Big Data IV” and SP2017/85 “Processing and advanced analysis of bio-medical data II,” of the Student Grant System, VŠB-Technical University of Ostrava.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2018 Springer International Publishing AG
About this paper
Cite this paper
Krömer, P., Platoš, J. (2018). Evaluation of Traveling Salesman Problem Instance Hardness by Clustering. In: Krömer, P., Alba, E., Pan, JS., Snášel, V. (eds) Proceedings of the Fourth Euro-China Conference on Intelligent Data Analysis and Applications. ECC 2017. Advances in Intelligent Systems and Computing, vol 682. Springer, Cham. https://doi.org/10.1007/978-3-319-68527-4_41
Download citation
DOI: https://doi.org/10.1007/978-3-319-68527-4_41
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-68526-7
Online ISBN: 978-3-319-68527-4
eBook Packages: EngineeringEngineering (R0)