Skip to main content

A High-Capacity Quantum Secret Sharing Protocol Based on Single D-Level Particles

  • Conference paper
  • First Online:
Cloud Computing and Security (ICCCS 2017)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 10603))

Included in the following conference series:

  • 2581 Accesses

Abstract

A new quantum secret sharing protocol is proposed to share a private key based on single d-level particles. A generalized definition of capacity is also given to weigh the total efficiency of such QSS protocols. It is shown that the capacity of this protocol is \( \log_{2} d \), higher than the ones using single two-level particles (the maximum capacity is 1) and the similar ones proposed by Tavakoli et al. and Karimipour et al. (the capacities are \( \log_{2} d/d \) and \( \log_{2} d/2 \) respectively). Besides, it is secure against several common attacks and feasible with present-day technology.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Castelvecchi, D.: Quantum computers ready to leap out the lab. Nature 541, 9–10 (2017)

    Article  Google Scholar 

  2. Shor, P.: Algorithms for quantum computation: discrete logarithms and factoring. In: FOCS (1994)

    Google Scholar 

  3. Grover, L.: Quantum mechanics helps in searching for a needle in a haystack. Phys. Rev. Lett. 79(2), 325–328 (1997)

    Article  Google Scholar 

  4. Hillery, M., Bužek, V., Berthiaume, A.: Quantum secret sharing. Phys. Rev. A 59(3), 1829–1834 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  5. Xu, J., Yuan, J.: Improvement and extension of quantum secret sharing using orthogonal product states. Int. J. Quantum Inf. 12(1), 1450008 (2014)

    Article  MATH  MathSciNet  Google Scholar 

  6. Maitra, A., De, S., Paul, G., Pal, A.: Proposal for quantum rational secret sharing. Phys. Rev. A 92(2), 022305 (2015)

    Article  Google Scholar 

  7. Liu, Z., Chen, H., Xu, J., Liu, W., Li, Z.: High-dimensional deterministic multiparty quantum secret sharing without unitary operations. Quantum Inf. Process. 11(6), 1785–1795 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  8. Gao, G.: Secure multiparty quantum secret sharing with the collective eavesdropping-check character. Quantum Inf. Process. 12(1), 55–68 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  9. Hsu, J., Chong, S., Hwang, T., Tsai, W.: Dynamic quantum secret sharing. Quantum Inf. Process. 12(1), 331–344 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  10. Chen, X., Niu, X., Zhou, X., Yang, Y.: Multi-party quantum secret sharing with the single-particle quantum state to encode the information. Quantum Inf. Process. 12(1), 365–380 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  11. Ji, Q., Liu, Y., Xie, C., Yin, X., Zhang, Z.: Tripartite quantum operation sharing with two asymmetric three-qubit W states in five entanglement structures. Quantum Inf. Process. 13, 1659–1676 (2014)

    Article  MATH  Google Scholar 

  12. Liao, C., Yang, C., Hwang, T.: Dynamic quantum secret sharing protocol based on GHZ state. Quantum Inf. Process. 13(8), 1907–1916 (2014)

    Article  MATH  Google Scholar 

  13. He, X., Yang, C.: Deterministic transfer of multiqubit GHZ entangled states and quantum secret sharing between different cavities. Quantum Inf. Process. 14(12), 4461–4474 (2015)

    Article  MATH  MathSciNet  Google Scholar 

  14. Xie, C., Liu, Y., Xing, H., Zhang, Z.: Probabilistic three-party sharing of operation on a remote qubit. Entropy 17(2), 841–851 (2015)

    Article  Google Scholar 

  15. Wagenknecht, C., Li, C., Reingruber, A., Bao, X., Goebel, A., Chen, Y., Zhang, Q., Chen, K., Pan, J.: Experimental demonstration of a heralded entanglement source. Nat. Photonics 4, 549–552 (2010)

    Article  Google Scholar 

  16. Xu, J.: Quantum secret sharing with shared key dependent on receivers. In: ICNC (2011)

    Google Scholar 

  17. Yan, F., Gao, T.: Quantum secret sharing between multiparty and multiparty without entanglement. Phys. Rev. A 72(1), 012304 (2005)

    Article  Google Scholar 

  18. Deng, F., Li, X., Zhou, H.: Efficient high-capacity quantum secret sharing with two-photon entanglement. Phys. Lett. A 372, 1957–1962 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  19. Xu, J., Chen, H., Liu, Z., Ruan, Y., Zhu, W.: Quantum secret sharing without exclusive OR of qubits’ measuring results. In: IEEE CEC (2012)

    Google Scholar 

  20. Tavakoli, A., Herbauts, I., Zukowski, M., Bourennane, M.: Secret sharing with a single d-level quantum system. Phys. Rev. A 92, 030302(R) (2015)

    Article  Google Scholar 

  21. Karimipour, V., Asoudeh, M.: Quantum secret sharing and random hopping: using single states instead of entanglement. Phys. Rev. A 92, 030301(R) (2015)

    Article  MathSciNet  Google Scholar 

  22. Bennett, C., Brassard, G.: Quantum cryptography: public key distribution and coin tossing. In: IEEE ICCSSP (1984)

    Google Scholar 

  23. Shor, P., Preskill, J.: Simple proof of security of the BB84 quantum key distribution protocol. Phys. Rev. Lett. 85(2), 441–444 (2000)

    Article  Google Scholar 

  24. Cai, Q.Y.: Eavesdropping on the two-way quantum communication protocols with invisible photons. Phys. Lett. A 351, 23–25 (2006)

    Article  MATH  Google Scholar 

  25. Deng, F.G., Li, X.H., Zhou, H.Y., Zhang, Z.J.: Erratum: improving the security of multiparty quantum secret sharing against Trojan horse attack. Phys. Rev. A 73, 049901(E) (2006). (Phys. Rev. A 72, 044302 (2005))

    Article  Google Scholar 

  26. Xu, J., Chen, H., Liu, Z., Ruan, Y., and Zhu, W.: Quantum secret sharing without exclusive OR of qubits’ measuring results. In: WCCI 2012 IEEE World Congress on Computational Intelligence, New York, pp. 613–616. IEEE, (2012)

    Google Scholar 

  27. Lin, S., Guo, G., Xu, Y., Sun, Y., Liu, X.: Cryptanalysis of quantum secret sharing with d-level single particles. Phys. Rev. A 93, 062343 (2016)

    Article  Google Scholar 

  28. Mohajer, R., Eslami, Z.: Quantum secret sharing using single states. In: 8th International Symposium on Telecommunications (IST) (2016)

    Google Scholar 

  29. Xu, T., Li, Z., Bai, C., Ma, M.: A new improving quantum secret sharing scheme. Int. J. Theor. Phys. 56, 1308 (2017)

    Article  MathSciNet  Google Scholar 

  30. Fu, Z., Ren, K., Shu, J., Sun, X., Huang, F.: Enabling personalized search over encrypted outsourced data with efficiency improvement. IEEE Trans. Parallel Distrib. Syst. 27(9), 2546–2559 (2016)

    Article  Google Scholar 

Download references

Acknowledgements

This work is supported by Natural Science Foundation of Jiangsu Province, China (Grant No. BK20140823), Chinese Postdoctoral Science Foundation (Grant No. 2013M531353), National Natural Science Foundation of China (Grant No. 61571226), Prospective Joint Research Project of Jiangsu Province (Grant No. BY2016003-11), and Fundamental Research Funds for the Central Universities (Grant No. NS2014096).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Juan Xu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Lin, X., Xu, J., Liu, H., Tang, X., Fu, M. (2017). A High-Capacity Quantum Secret Sharing Protocol Based on Single D-Level Particles. In: Sun, X., Chao, HC., You, X., Bertino, E. (eds) Cloud Computing and Security. ICCCS 2017. Lecture Notes in Computer Science(), vol 10603. Springer, Cham. https://doi.org/10.1007/978-3-319-68542-7_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-68542-7_12

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-68541-0

  • Online ISBN: 978-3-319-68542-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics