Skip to main content

Towards Fully Homomorphic Encryption From Gentry-Peikert-Vaikuntanathan Scheme

  • Conference paper
  • First Online:
Cloud Computing and Security (ICCCS 2017)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 10603))

Included in the following conference series:

  • 2722 Accesses

Abstract

Despite the convenience brought by cloud computing, internet users, meanwhile, are faced with risks of data theft, tampering, forgery, etc. Fully homomorphic encryption (FHE) has the ability to deal with the ciphertext directly, which can solve the problem of data security in cloud computing. Therefore, fully homomorphic encryption (FHE) has been widely used in cloud computing as well as multiparty computing, functional encryption and private information retrieval, etc. However, previous FHE schemes are based on standard (ring) learning with errors (LWE) assumption and the most typical schemes were created by Brakerski (CRYPTO2012) and Gentry-Sahai-Waters (GSW) (CRYPTO2013). Moreover, inspired by the work of Li et al. at ICPADS2016, they made use of Brakerski’s scale-invariant technology and constructed a new FHE scheme with errorless key switching under Dual-First-is-errorless LWE (Dual-Ferr.LWE) problem. Hence, armed with Li et al.’s work, in this paper, we use Gentry-Peikert-Vaikuntanathan’s scheme (i.e., under dual LWE assumption) as building block to construct a FHE scheme. Lastly, under the assumption of decisional learning with errors (LWE), we prove that our scheme is CPA (chosen-plaintext-attack) secure.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Agrawal, S., Boneh, D., Boyen, X.: Efficient lattice (H)IBE in the standard model. In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS, vol. 6110, pp. 553–572. Springer, Heidelberg (2010). doi:10.1007/978-3-642-13190-5_28

    Chapter  Google Scholar 

  2. Brakerski, Z.: Fully homomorphic encryption without modulus switching from classical GapSVP. In: Safavi-Naini, R., Canetti, R. (eds.) CRYPTO 2012. LNCS, vol. 7417, pp. 868–886. Springer, Heidelberg (2012). doi:10.1007/978-3-642-32009-5_50

    Chapter  Google Scholar 

  3. Brakerski, Z., Gentry, C., Halevi, S.: Packed ciphertexts in LWE-based homomorphic encryption. In: Kurosawa, K., Hanaoka, G. (eds.) PKC 2013. LNCS, vol. 7778, pp. 1–13. Springer, Heidelberg (2013). doi:10.1007/978-3-642-36362-7_1

    Chapter  Google Scholar 

  4. Brakerski, Z., Gentry, C., Vaikuntanathan, V.: (Leveled) fully homomorphic encryption without bootstrapping. In Proceedings of the 3rd Innovations in Theoretical Computer Science Conference, pp. 309–325, ACM (2012)

    Google Scholar 

  5. Brakerski, Z., Vaikuntanathan, V.: Efficient fully homomorphic encryption from (standard) LWE. In: 2011 IEEE 52nd Annual Symposium on Foundations of Computer Science, pp. 97–106. IEEE (2011)

    Google Scholar 

  6. Brakerski, Z., Vaikuntanathan, V.: Fully homomorphic encryption from ring-LWE and security for key dependent messages. In: Rogaway, P. (ed.) CRYPTO 2011. LNCS, vol. 6841, pp. 505–524. Springer, Heidelberg (2011). doi:10.1007/978-3-642-22792-9_29

    Chapter  Google Scholar 

  7. Brakerski, Z., Vaikuntanathan, V.: Lattice-based the as secure as PKE. In: Proceedings of the 5th Conference on Innovations in Theoretical Computer Science, pp. 1–12 (2014)

    Google Scholar 

  8. Fu, Z., Ren, K., Shu, J., Sun, X., Huang, F.: Enabling personalized search over encrypted outsourced data with efficiency improvement. IEEE Trans. Parallel Distrib. Syst. 27(9), 2546–2559 (2016)

    Article  Google Scholar 

  9. Gentry, C., et al.: Fully homomorphic encryption using ideal lattices. STOC 9, 169–178 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  10. Gentry, C., Halevi, S., Smart, N.P.: Homomorphic evaluation of the AES circuit. In: Safavi-Naini, R., Canetti, R. (eds.) CRYPTO 2012. LNCS, vol. 7417, pp. 850–867. Springer, Heidelberg (2012). doi:10.1007/978-3-642-32009-5_49

    Chapter  Google Scholar 

  11. Gentry, C., Peikert, C., Vaikuntanathan, V.: Trapdoors for hard lattices and new cryptographic constructions. In: Proceedings of the Fortieth Annual ACM Symposium on Theory of Computing, pp. 197–206. ACM (2008)

    Google Scholar 

  12. Gentry, C., Sahai, A., Waters, B.: Homomorphic encryption from learning with errors: conceptually-simpler, asymptotically-faster, attribute-based. In: Canetti, R., Garay, J.A. (eds.) CRYPTO 2013. LNCS, vol. 8042, pp. 75–92. Springer, Heidelberg (2013). doi:10.1007/978-3-642-40041-4_5

    Chapter  Google Scholar 

  13. Halevi, S., Shoup, V.: Algorithms in HElib. In: Garay, J.A., Gennaro, R. (eds.) CRYPTO 2014. LNCS, vol. 8616, pp. 554–571. Springer, Heidelberg (2014). doi:10.1007/978-3-662-44371-2_31

    Chapter  Google Scholar 

  14. Halevi, S., Shoup, V.: Bootstrapping for HElib. In: Oswald, E., Fischlin, M. (eds.) EUROCRYPT 2015. LNCS, vol. 9056, pp. 641–670. Springer, Heidelberg (2015). doi:10.1007/978-3-662-46800-5_25

    Google Scholar 

  15. Hiromasa, R., Abe, M., Okamoto, T.: Packing messages and optimizing bootstrapping in GSW-FHE. In: Katz, J. (ed.) PKC 2015. LNCS, vol. 9020, pp. 699–715. Springer, Heidelberg (2015). doi:10.1007/978-3-662-46447-2_31

    Google Scholar 

  16. Li, Z., Galbraith, S.D., Ma, C.: Preventing adaptive key recovery attacks on the GSW levelled homomorphic encryption scheme. In: Proceedings of the Provable Security - 10th International Conference, ProvSec 2016, Nanjing, China, 10–11 November 2016, pp. 373–383 (2016)

    Google Scholar 

  17. Li, Z., Ma, C., Du, G., Ouyang, W.: Dual LWE-based fully homomorphic encryption with errorless key switching. In: IEEE ICPADS 2016, pp. 1169–1174 (2016)

    Google Scholar 

  18. Li, Z., Ma, C., Morais, E., Du, G.: Multi-bit leveled homomorphic encryption via mathsf dual.LWE-based. In: Proceedings Inscrypt 2016, Revised Selected Papers, Beijing, China, 4–6 November 2016, pp. 221–242 (2016)

    Google Scholar 

  19. Li, Z., Ma, C., Wang, D.: Leakage resilient leveled the on multiple bit message. IEEE Trans. Big Data (2017)

    Google Scholar 

  20. Rivest, R.L., Adleman, L., Dertouzos, M.L.: On data banks and privacy homomorphisms. Found. Secure Comput. 4(11), 169–180 (1978)

    MathSciNet  Google Scholar 

  21. Smart, N.P., Vercauteren, F.: Fully homomorphic encryption with relatively small key and ciphertext sizes. In: Nguyen, P.Q., Pointcheval, D. (eds.) PKC 2010. LNCS, vol. 6056, pp. 420–443. Springer, Heidelberg (2010). doi:10.1007/978-3-642-13013-7_25

    Chapter  Google Scholar 

  22. Stehlé, D., Steinfeld, R.: Faster fully homomorphic encryption. In: Abe, M. (ed.) ASIACRYPT 2010. LNCS, vol. 6477, pp. 377–394. Springer, Heidelberg (2010). doi:10.1007/978-3-642-17373-8_22

    Chapter  Google Scholar 

  23. Wang, D., He, D., Wang, P., Chu, C.-H.: Anonymous two-factor authentication in distributed systems: certain goals are beyond attainment. IEEE Trans. Dependable Secure Comput. 12(4), 428–442 (2015)

    Article  Google Scholar 

  24. Wang, D., Wang, N., Wang, P., Qing, S.: Preserving privacy for free: efficient and provably secure two-factor authentication scheme with user anonymity. Inf. Sci. 321, 162–178 (2015)

    Article  Google Scholar 

  25. Xia, Z., Wang, X., Sun, X., Wang, Q.: A secure and dynamic multi-keyword ranked search scheme over encrypted cloud data. IEEE Trans. Parallel Distrib. Syst. 27(2), 340–352 (2016)

    Article  Google Scholar 

  26. Xia, Z., Wang, X., Zhang, L., Qin, Z., Sun, X., Ren, K.: A privacy-preserving and copy-deterrence content-based image retrieval scheme in cloud computing. IEEE Trans. Inf. Forensics Secur. 1(11), 2594–2608 (2016)

    Article  Google Scholar 

Download references

Acknowledgements

We would like to thank all anonymous reviewers for their helpful advice and comments. This work is supported by the National Natural Science Foundation of China (Grant No. 61472097) and Fujian Provincial Key Laboratory of Network Security and Cryptology Research Fund (Fujian Normal University) (No. 15003).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chunguang Ma .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Du, G., Ma, C., Li, Z., Wang, D. (2017). Towards Fully Homomorphic Encryption From Gentry-Peikert-Vaikuntanathan Scheme. In: Sun, X., Chao, HC., You, X., Bertino, E. (eds) Cloud Computing and Security. ICCCS 2017. Lecture Notes in Computer Science(), vol 10603. Springer, Cham. https://doi.org/10.1007/978-3-319-68542-7_21

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-68542-7_21

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-68541-0

  • Online ISBN: 978-3-319-68542-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics