Skip to main content

New Delay-Dependent Stability for Neutral Systems with Its Application to Partial Circuit Model

  • Conference paper
  • First Online:
Cloud Computing and Security (ICCCS 2017)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 10603))

Included in the following conference series:

  • 2677 Accesses

Abstract

The issue on robust stability for a class of uncertain linear neutral systems with time-varying delays is studied. Together with multiple integral functional technique and using some novel integral inequalities, the much tighter estimation on derivative of Lyapunov functional is presented and one stability criterion is presented in terms of linear matrix inequalities (LMIs), in which those previously ignored information can be reconsidered. Especially, the multiple Lyapunov functional terms include the interconnection between neutral delay and state one. Finally, some comparing results with application to partial element circuit model can show the benefits of our conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Samli, R., Arik, S.: New results for global stability of a class of neutral-type neural systems with time delays. Appl. Math. Comput. 210, 564–570 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  2. Park, J., Kwon, O.: On new stability criterion for delay differential systems of neutral type. Appl. Math. Comput. 162, 627–637 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  3. Ding, L., He, Y., Wu, M., Ning, C.: Improved mixed-delay-dependent asymptotic stability criteria for neutral systems. IET Control Theory Appl. 9, 2180–2187 (2015)

    Article  MathSciNet  Google Scholar 

  4. Alaviani, S.: Delay-dependent exponential stability of linear time-varying neutral delay systems. IFAC-PapersOnLine 48, 177–179 (2015)

    Article  Google Scholar 

  5. Ren, Y., Feng, Z., Sun, G.: Improved stability conditions for uncertain neutral-type systems with time-varying delays. Int. J. Syst. Sci. 47, 1982–1993 (2016)

    Article  MATH  MathSciNet  Google Scholar 

  6. Liu, P.: Improved results on delay-interval-dependent robust stability criteria for uncertain neutral-type systems with time-varying delays. ISA Trans. 60, 53–66 (2016)

    Article  Google Scholar 

  7. Qian, W., Liu, J., Sun, Y., Fei, S.: A less conservative robust stability criteria for uncertain neutral systems with mixed delays. Math. Comput. Simul. 80, 1007–1017 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  8. Lu, R., Wu, H., Bai, J.: New delay-dependent robust stability criteria for uncertain neutral systems with mixed delays. J. Frankl. Inst. 351, 1386–1399 (2014)

    Article  MathSciNet  Google Scholar 

  9. Chen, Y., Qian, W., Fei, S.: Improved robust stability conditions for uncertain neutral systems with discrete and distributed delays. J. Frankl. Inst. 352, 2634–2645 (2015)

    Article  MathSciNet  Google Scholar 

  10. Liu, S., Xiang, Z.: Exponential \(H_{\infty }\) output tracking control for switched neutral system with time-varying delay and nonlinear perturbations. Circuits Syst. Signal Process. 32(1), 103–121 (2013)

    Article  MathSciNet  Google Scholar 

  11. Liu, Y., Ma, W., Mahmoud, M., Lee, S.: Improved delay-dependent exponential stability criteria for neutral-delay systems with nonlinear uncertainties. Appl. Math. Model. 39, 3164–3174 (2015)

    Article  MathSciNet  Google Scholar 

  12. Wang, W., Nguang, S., Zhong, S., Liu, F.: Delay-dependent stability criteria for uncertain neutral system with time-varying delays and nonlinear perturbations. Circuits Syst. Signal Process. 33(9), 2719–2740 (2014)

    Article  Google Scholar 

  13. Qiu, F., Cao, J., Hayat, T.: Delay-dependent stability of neutral system with mixed time-varying delays and nonlinear perturbations using delay-dividing approach. Cogn. Neurodyn. 9, 75–83 (2015)

    Article  Google Scholar 

  14. Cheng, J., Zhu, H., Zhong, S., Li, G.: Novel delay-dependent robust stability criteria for neutral systems with mixed time-varying delays and nonlinear perturbations. Appl. Math. Comput. 219, 7741–7753 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  15. Qiu, F., Cui, B., Ji, Y.: Further results on robust stability of neutral system with mixed time-varying delays and nonlinear perturbations. Nonlinear Anal.: Real World Appl. 11, 895–906 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  16. Lakshmanan, S., Senthilkumar, T., Balasubraman, M.: Improved results on robust stability of neutral systems with mixed time-varying delays and nonlinear perturbations. Appl. Math. Model. 35, 5355–5368 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  17. Hui, J., Kong, X., Zhang, H., Zhou, X.: Delay-partitioning approach for systems with interval time-varying delay and nonlinear perturbations. J. Comput. Appl. Math. 281, 74–81 (2015)

    Article  MATH  MathSciNet  Google Scholar 

  18. Han, Q.: Improved stability criteria and controller design for linear neutral systems. Automatica 45, 1948–1952 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  19. Qiu, F., Cui, B.: A delay-dividing approach to stability of neutral system with mixed delays and nonlinear perturbations. Appl. Math. Model. 34, 3701–3707 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  20. Chen, H., Wang, L.: New result on exponential stability for neutral stochastic linear system with time-varying delay. Appl. Math. Comput. 239, 320–325 (2015)

    MATH  MathSciNet  Google Scholar 

  21. Obradovic, M., Milosevic, M.: Stability of a class of neutral stochastic differential equations with unbounded delay and Markovian switching and the Euler-Maruyama method. J. Comput. Appl. Math. 309(1), 244–266 (2017)

    Article  MATH  MathSciNet  Google Scholar 

  22. Liu, L., Zhu, Q.: Mean square stability of two classes of theta method for neutral stochastic differential delay equations. J. Comput. Appl. Math. 305(15), 55–67 (2016)

    Article  MATH  MathSciNet  Google Scholar 

  23. Balasubramaniam, P., Krishnasamy, R.: Robust exponential stabilization results for impulsive neutral time-delay systems with sector-bounded nonlinearity. Circuits Syst. Signal Process. 33(9), 2741–2759 (2014)

    Article  MathSciNet  Google Scholar 

  24. Raja, R., Zhu, Q., Senthilraj, S., Samidurai, R.: Improved stability analysis of uncertain neutral type neural networks with leakage delays and impulsive effects. Appl. Math. Comput. 266, 1050–1069 (2015)

    MathSciNet  Google Scholar 

  25. Yu, Y.: Global exponential convergence for a class of neutral functional differential equations with proportional delays. Math. Methods Appl. Sci. (2016). doi:10.1002/mma.3880

  26. Xiong, L., Zhang, H., Li, Y.: Improved stability and \(H\) infinity performance for neutral systems with uncertain Markovian jumpinging. Nonlinear Anal.: Hybrid Syst. 19, 13–25 (2016)

    MathSciNet  Google Scholar 

  27. Yue, D., Han, Q.: A delay-dependent stability criterion of neutral systems and its application to a partial element equivalent circuit model. IEEE Trans. Circuits Syst.-II 51, 685–689 (2004)

    Article  Google Scholar 

  28. Zeng, H., He, Y., Wu, M., She, J.: New results on stability analysis for systems with discrete distributed delay. Automatica 63, 189–192 (2015)

    Article  MATH  MathSciNet  Google Scholar 

  29. Park, M., Kwon, O., Park, J., Lee, S.: Stability of time-delay systems via Wirtinger-based double integral inequality. Automatica 55, 204–208 (2015)

    Article  MathSciNet  Google Scholar 

  30. Li, T., Wang, T., Song, A., Fei, S.: Delay-derivative-dependent stability for delayed neural networks with unbounded distributed delay. IEEE Trans. Neural Netw. 21, 1365–1371 (2010)

    Article  Google Scholar 

  31. Li, T., Song, A., Fei, S.: Robust stability of stochastic Cohen-Grossberg neural networks with mixed time-varying delays. Neurocomputing 73, 542–551 (2009)

    Article  Google Scholar 

Download references

Acknowledgements

This work is supported by National Natural Science Foundation of China (Nos. 61403194, 61473079), Jiangsu Natural Science Foundation (Nos. BK20140836, BK20150888), Natural Science Foundation for Universities in Jiangsu Province (No. 15KJB12004), and Fundamental Research Fund for Central Universities (Nos. NS2016030, NJ20160024).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tao Li .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Li, T., Wang, T., Deng, J., Zhang, L. (2017). New Delay-Dependent Stability for Neutral Systems with Its Application to Partial Circuit Model. In: Sun, X., Chao, HC., You, X., Bertino, E. (eds) Cloud Computing and Security. ICCCS 2017. Lecture Notes in Computer Science(), vol 10603. Springer, Cham. https://doi.org/10.1007/978-3-319-68542-7_66

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-68542-7_66

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-68541-0

  • Online ISBN: 978-3-319-68542-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics