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Abstract. Deciding whether a given graph has a square root is a classi-
cal problem that has been studied extensively both from graph theoretic
and from algorithmic perspectives. The problem is NP-complete in gen-
eral, and consequently substantial effort has been dedicated to deciding
whether a given graph has a square root that belongs to a particular
graph class. There are both polynomial-time solvable and NP-complete
cases, depending on the graph class. We contribute with new results in
this direction. Given an arbitrary input graph G, we give polynomial-
time algorithms to decide whether G has an outerplanar square root,
and whether G has a square root that is of pathwidth at most 2.

1 Introduction

Squares and square roots of graphs form a classical and well-studied topic in
graph theory, which has also attracted significant attention from the algorithms
community. A graph G is the square of a graph H if G and H have the same
vertex set, and two vertices are adjacent in G if and only if the distance between
them is at most 2 in H. This situation is denoted by G = H2, and H is called a
square root of G. A square root of a graph need not be unique; it might even not
exist. There are graphs without square roots, graphs with a unique square root,
and graphs with several different square roots. Characterizing and recognizing
graphs with square roots has therefore been an intriguing and important problem
both in graph theory and in algorithms for decades.

Already in 1967, Mukhopadhyay [26] proved that a graph G on vertex set
{v1, . . . , vn} has a square root if and only if G contains complete subgraphs
{K1, . . . ,Kn}, such that each Ki contains vi, and vertex vj belongs to Ki if and
only if vi belongs to Kj . Unfortunately, this characterization does not yield a
polynomial-time algorithm for deciding whether G has a square root. Let us for-
mally call Square Root the problem of deciding whether an input graph G has
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a square root. In 1994, it was shown by Motwani and Sudan [25] that Square
Root is NP-complete. Motivated by its computational hardness, special cases
of the problem have been studied, where the input graph G belongs to a partic-
ular graph class. According to these results, Square Root is polynomial-time
solvable on planar graphs [22], and more generally, on every non-trivial minor-
closed graph class [27]. Polynomial-time algorithms exist also when the input
graph G belongs to one of the following graph classes: block graphs [20], line
graphs [23], trivially perfect graphs [24], threshold graphs [24], graphs of max-
imum degree 6 [3], graphs of maximum average degree smaller than 46

11 [13],
graphs with clique number at most 3 [14], and graphs with bounded clique num-
ber and no long induced path [14]. On the negative side, it has been shown that
Square Root is NP-complete on chordal graphs [17]. A number of parameter-
ized complexity results exist for the problem [3, 4, 13].

More interesting from our perspective, the intractability of the problem has
also been attacked by restricting the properties of the square root that we are
looking for. In this case, the input graph G is arbitrary, and the question is
whether G has a square root that belongs to some graph class H specified in
advance. We denote this problem by H-Square Root, and this is exactly the
problem variant that we focus on in this paper.

Significant advances have been made also in this direction. Previous results
show that H-Square Root is polynomial-time solvable for the following graph
classes H: trees [22], proper interval graphs [17], bipartite graphs [16], block
graphs [20], strongly chordal split graphs [21], ptolemaic graphs [18], 3-sun-free
split graphs [18], cactus graphs [12], cactus block graphs [8] and graphs with
girth at least g for any fixed g ≥ 6 [10]. The result for 3-sun-free split graphs has
been extended to a number of other subclasses of split graphs in [19]. Observe
that if H-Square Root is polynomial-time solvable for some class H, then
this does not automatically imply that H′-Square Root is polynomial-time
solvable for a subclass H′ of H.

On the negative side, H-Square Root remains NP-complete for each of
the following graph classes H: graphs of girth at least 5 [9], graphs of girth at
least 4 [10], split graphs [17], and chordal graphs [17]. All known NP-hardness
constructions involve dense graphs [9, 10, 17, 25], and the square roots that occur
in these constructions are dense as well. This, in combination with the listed
polynomial-time cases, naturally leads to the question whetherH-Square Root
is polynomial-time solvable if the class H is “sparse” in some sense.

Motivated by the above, in this paper we study H-Square Root when H is
the class of outerplanar graphs, and when H is the class of graphs of pathwidth
at most 2. In both cases, we show thatH-Square Root can be solved in polyno-
mial time. In particular, we prove that Outerplanar (Square) Root can be
solved in time O(n4) and (Square) Root of Pathwidth ≤ 2 in time O(n6).
Our approach for outerplanar graphs can in fact be directly applied to every
subclass of outerplanar graphs that is closed under edge deletion and that can
be expressed in monadic second-order logic, including cactus graphs, for which



a polynomial-time algorithm is already known [12]. Due to space restrictions,
some proofs are omitted; see [11] for the full version of our paper.

2 Preliminaries

We consider only finite undirected graphs without loops and multiple edges. We
refer to the textbook by Diestel [7] for any undefined graph terminology.

Let G be a graph. We denote the vertex set of G by VG and the edge set by
EG. The subgraph of G induced by a subset U ⊆ VG is denoted by G[U ]. The
graph G − U is the graph obtained from G after removing the vertices of U . If
U = {u}, we also write G− u. Similarly, we denote the graph obtained from G
by deleting a set of edges S, or a single edge e, by G−S and G− e, respectively.

The distance distG(u, v) between a pair of vertices u and v of G is the
number of edges of a shortest path between them. The open neighborhood of a
vertex u ∈ VG is defined as NG(u) = {v | uv ∈ EG}, and its closed neighborhood
is defined as NG[u] = NG(u) ∪ {u}. For S ⊆ VG, NG(S) = (

⋃
v∈S NG(v)) \ S.

Two (adjacent) vertices u, v are said to be true twins if NG[u] = NG[v]. A vertex
v is simplicial if NG[v] is a clique, that is, if there is an edge between any two
vertices of NG[v]. The degree of a vertex u ∈ VG is defined as dG(u) = |NG(u)|.
The maximum degree of G is ∆(G) = max{dG(v) | v ∈ VG}. A vertex of degree 1
is said to be a pendant vertex.

A connected component of G is a maximal connected subgraph. A vertex u is
a cut vertex of a graph G with at least two vertices if G−u has more components
than G. A connected graph without cut vertices is said to be biconnected. An
inclusion-maximal induced biconnected subgraph of G is called a block.

For a positive integer k, the k-th power of a graph H is the graph G = Hk

with vertex set VG = VH such that every pair of distinct vertices u and v of G
are adjacent if and only if distH(u, v) ≤ k. For the particular case k = 2, H2 is
a square of H, and H is a square root of G if G = H2.

The contraction of an edge uv of a graph G is the operation that deletes the
vertices u and v and replaces them by a vertex w adjacent to (NG(u)∪NG(v)) \
{u, v}. A graph G′ is a contraction of a graph G if G′ can be obtained from G
by a series of edge contraction. A graph G′ is a minor of G if it can be obtained
from G by vertex deletions, edge deletions and edge contractions.

A graph G is planar if it admits an embedding on the plane such that there
are no edges crossing (except in endpoints). A planar graph G is outerplanar if it
admits a crossing-free embedding on the plane in such a way that all its vertices
are on the boundary of the same (external) face. For a considered outerplanar
graph, we always assume that its embedding on the plane is given. If G is a
planar biconnected graph different from K2, then for any of its embeddings, the
boundary of each face is a cycle (see, e.g., [7]). If G is a biconnected outerplanar
graph distinct from K2, then the cycle C forming the boundary of the external
face is unique and we call it the boundary cycle. By definition, all vertices of G
are laying on C, and every edge is either an edge of C or a chord of C, that is,
its endpoints are vertices of C that are non-adjacent in C. Clearly, these chords



are not intersecting in the embedding. For a vertex u, we define the clockwise
ordering with respect to u as a clockwise ordering of the vertices on C starting
from u. For a subset of vertices X, the clockwise ordering of X with respect to
u is the ordering induced by the clockwise ordering of the vertices of C. See
Figure 1 a) for some examples. In our paper, we use these terms for blocks of
an outerplanar graph that are distinct from K2. Outerplanar graphs can also be
characterized via forbidden minors as shown by Sys lo [29].
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Fig. 1. a) clockwise orderings with respect to u of a biconnected outerplanar graph
with vertex set VG = {v1, . . . , vn} and a set X = {x1, . . . , xk}. b) Example of a set
X = {x1, x2, x3} that is consecutive with respect to u; notice that the vertices x1 and
x3 are not consecutive.

Lemma 1 ([29]). A graph G is outerplanar if and only if it does not contain
K4 and K2,3 as minors.

A tree decomposition of a graph G is a pair (T,X) where T is a tree and
X = {Xi | i ∈ VT } is a collection of subsets (called bags) of VG such that the
following three conditions hold:

i)
⋃

i∈VT
Xi = VG,

ii) for each edge xy ∈ EG, x, y ∈ Xi for some i ∈ VT , and
iii) for each x ∈ VG the set {i | x ∈ Xi} induces a connected subtree of T .

The width of a tree decomposition ({Xi | i ∈ VT }, T ) is maxi∈VT
{|Xi| − 1}. The

treewidth tw(G) of a graph G is the minimum width over all tree decomposi-
tions of G. If T is restricted to be a path, then we say that (X,T ) is a path
decomposition of G. The pathwidth pw(G) of G is the minimum width over all
path decompositions of G. Notice that a path decomposition of G can be seen as
a sequence (X1, . . . , Xr) of bags. We always assume that the bags (X1, . . . , Xr)
are distinct and inclusion incomparable, that is, there are no bags Xi and Xj

such that Xi ⊂ Xj . The following fundamental results are due to Bodlaender [1],
and Bodlaender and Kloks [2].



Lemma 2 ([1, 2]). For every fixed constant c, it is possible to decide in linear
time whether the treewidth or the pathwidth of a graph is at most c.

We need the following three folklore observations about treewidth.

Observation 1 If H is a minor (contraction) of G, then tw(H) ≤ tw(G) and
pw(H) ≤ pw(G).

Observation 2 For an outerplanar graph G, tw(G) ≤ 2.

Observation 3 For a graph G and a positive integer k,

tw(Gk) ≤ (tw(G) + 1)∆(G)bk/2c+1

and
pw(Gk) ≤ (pw(G) + 1)∆(G)bk/2c+1.

Let H be a square root of a graph G. We say that H is a minimal square
root of G if H2 = G, and no proper subgraph of H is a square root of G. We
need the following simple observations.

Observation 4 Let H be a graph class closed under edge deletion. If a graph G
has a square root H ∈ H, then G has a minimal square root that belongs to H.

Observation 5 Let H be a minimal square root of a graph G that contains three
vertices u, v, w that are pairwise adjacent in H. Then v or w has a neighbor x 6= u
in H such that x is not adjacent to u in H.

We conclude this section by a lemma that is implicit in [12], which enables
us to identify some edges that are not included in any square root.

Lemma 3. Let x, y be distinct neighbors of a vertex u in a graph G such that x
and y are at distance at least 3 in G− u. Then xu, yu /∈ EH for any square root
H of G.

3 Outerplanar Roots

In this section, we show that it can be decided in polynomial time whether a
graph has an outerplanar square root. We say that a square root H of G is an
outerplanar root if H is outerplanar. We define the following problem:

Outerplanar Root
Input: a graph G.
Question: is there an outerplanar graph H such that H2 = G?

The main result of this section is the following.

Theorem 1. Outerplanar Root can be solved in time O(n4), where n is the
number of vertices of the input graph.

The remaining part of this section is devoted to the proof of Theorem 1. In
Section 3.1 we obtain several structural results we need to construct an algorithm
for Outerplanar Root. Then, in Section 3.2, we construct a polynomial-time
algorithm for Outerplanar Root.



3.1 Structural Lemmas

In this section, we give several structural results about outerplanar square roots.
Due to space restriction we omit the proofs.

Let H be an outerplanar root of a graph G and let u ∈ VG. We say that two
distinct vertices x, y ∈ NH(u) are consecutive with respect to u if x and y are in
the same block F of H and there are no vertices of NH(u) between x and y in the
clockwise ordering of the vertices of the boundary cycle of F with respect to u.
For a set of vertices X ⊆ NH(u), we say that the vertices X are consecutive with
respect to u if the vertices of X are in the same block of H and any two vertices
of X consecutive in the clockwise ordering of elements of X with respect to u are
consecutive with respect to u; a single-vertex set is assumed to be consecutive
(see Figure 1 b) for an example).

As every subgraph of an outerplanar graph is outerplanar, by Observation 4,
we may restrict ourselves to minimal outerplanar roots. Let H be a minimal
outerplanar root of a graph G and let u ∈ VG. Denote by S(G,H, u) a collection
of all subsets X of NH(u) such that X = NG(x) ∩NH(u) for some x ∈ NG(u) \
NH(u). We can use S(G,H, u) to find edges with both endpoints in NH(u) that
are not included in a square root.

Lemma 4. Let H be a minimal outerplanar root of a graph G, and let u ∈ VG.
Then for each X ∈ S(G,H, u), X is consecutive with respect to u.

Lemma 5. Let H be a minimal outerplanar root of a graph G, and let u ∈ VG.
If for two distinct vertices x, y ∈ NH(u) there is no set X ∈ S(G,H, u) such that
x, y ∈ X, then xy /∈ EH .

We also need the following two lemmas.

Lemma 6. Let H be a minimal outerplanar root of a graph G, and let u ∈ VG. If
x ∈ NH(u) is not a pendant vertex of H, then there is a vertex y ∈ NG(u)\NH(u)
that is adjacent to x in G.

Lemma 7. Let H be a minimal outerplanar root of a graph G, and let u ∈ VG.
Then any X ∈ S(G,H, u) has size at most 4.

By combining Lemmas 4 and 7 we obtain the following lemma.

Lemma 8. Let H be a minimal outerplanar root of a graph G, and let u ∈ VG.
Then the following holds.

(i) If x, y ∈ NH(u) do not belong to the same block of H, then for any X ∈
S(G,H, u), x /∈ X or y /∈ X.

(ii) If F is a block of H containing u and vertices x1, . . . , xk ∈ NH(u) ordered
in the clockwise order with respect to u in the boundary cycle of F , then for
any X ∈ S(G,H, u), xi /∈ X or xj /∈ X if i, j ∈ {1, . . . , k} and |i− j| ≥ 4.



We now state some structural results that help to decide whether an edge
incident to a vertex is in an outerplanar root or not. Suppose that u and v are
pendant vertices of a square root H of G and that u and v are adjacent to the
same vertex of H − {u, v}. Then, in G, u and v are simplicial vertices and true
twins. We use this observation in the proof of the following lemma that allows
to find some pendant vertices.

Lemma 9. Let H be a minimal outerplanar root of a graph G. If G contains at
least 7 simplicial vertices that are pairwise true twins, then at least one of these
vertices is a pendant vertex of H.

We apply Lemma 3 to identify the edges incident to a vertex of sufficiently
high degree in an outerplanar root using the following two lemmas.

Lemma 10. Let G be a graph having a minimal outerplanar root H. Let also
u ∈ VG be such that there are three distinct vertices v1, v2, v3 ∈ NG(u) that are
pairwise at distance at least 3 in G − u. Then for x ∈ NG(u), xu /∈ EH if and
only if there is i ∈ {1, 2, 3} such that distG−u(x, vi) ≥ 3.

Lemma 11. Let G be a graph having a minimal outerplanar root H such that
any vertex of H has at most 7 pendant neighbors. Let also u ∈ VG with dH(u) ≥
22. Then there are distinct v1, v2, v3 ∈ NG(u) that are pairwise at distance at
least 3 in G− u.

Notice that v1, v2 and v3 are in distinct components of H − u. We obtain
that v3 is at distance at least 3 from v1 and v2 in G− u.

The next lemma is crucial for our algorithm. To state it, we need some
additional notations. Let H be a minimal outerplanar root of a graph G such
that each vertex of H is adjacent to at most 7 pendant vertices. Let U be a
set of vertices of H that contains all vertices of degree at least 22. For every
u ∈ U and every block F of H containing u, we do the following. Consider the
set X = NH(u) ∩ VF and denote the vertices of X by x1, . . . , xk, where these
vertices are numbered in the clockwise order with respect to u. Then

– for i, j ∈ {1, . . . , k}, delete the edge xixj from G if |i− j| ≥ 4.
– for i ∈ {1, . . . , k}, delete the edges xiy from G for y ∈ NH(u) \ VF .

Denote by G(H,U) the graph obtained in the end.

Lemma 12. There is a constant c that depends neither on G nor on H such
that

tw(G(H,U)) ≤ c.

3.2 The Algorithm

In this section, we construct an algorithm for Outerplanar Root with running
time O(n4). Let G be the input graph. Clearly, it is sufficient to solve Outer-
planar Root for connected graphs. Hence, we assume that G is connected and
has n ≥ 2 vertices.



First, we preprocess G using Lemma 9 to reduce the number of pendant
vertices adjacent to the same vertex in a (potential) outerplanar root of G. To
do so, we exhaustively apply the following rule.

Pendants reduction. If G has a set X of simplicial true twins of size at least 8,
then delete an arbitrary u ∈ X from G.

The following lemma shows that this rule is safe.

Lemma 13. If G′ = G − u is obtained from G by the application of Pendant
reduction, then G has an outerplanar root if and only if G′ has an outerplanar
root.

Proof. Suppose that H is a minimal outerplanar root of G. By Lemma 9, H has a
pendant vertex u ∈ X. It is easy to verify that H ′ = H−u is an outerplanar root
of G′. Assume now that H ′ is a minimal outerplanar root of G′. By Lemma 9,
H has a pendant vertex w ∈ X \ {u}, since the vertices of X \ {u} are simplicial
true twins of G′ and |X \ {u}| ≥ 7. Let v be the unique neighbor of w in H ′. We
construct H from H ′ by adding u and making it adjacent to v. It is readily seen
that H is an outerplanar root of G. This completes the proof. ut

For simplicity, we call the graph obtained by exhaustive application of the
pendants reduction rule G again. The following property immediately follows
from the observation that any two pendant vertices of a square root H of G
adjacent to the same vertex in H are true twins of G.

Lemma 14. Every outerplanar root of G has at most 7 pendant vertices adja-
cent to the same vertex.

In the next stage of our algorithm we label some edges of G red or blue in
such a way that the edges labeled red are included in every minimal outerplanar
root and the blue edges are not included in any minimal outerplanar root. We
denote by R the set of red edges and by B the set of blue edges. We also construct
a set of vertices U of G such that for every u ∈ U , the edges incident to u are
labeled red or blue.

Labeling. Set U = ∅, R = ∅ and B = ∅. For each u ∈ VG such that there are
three distinct vertices v1, v2, v3 ∈ NG(u) that are at distance at least 3 from each
other in G− u, do the following:

(i) set U = U ∪ {u},
(ii) set B′ = {ux ∈ EG | there is 1 ≤ i ≤ 3 s.t. distG−u(x, vi) ≥ 3},

(iii) set R′ = {ux | x ∈ NG(u)} \B′,
(iv) set R = R ∪R′ and B = B ∪B′,
(v) if R ∩B 6= ∅, then return a no-answer and stop.

Lemmas 10 and 11 imply the following statement.

Lemma 15. If G has an outerplanar root, then Labeling does not stop in
Step (v), and if H is a minimal outerplanar root of G, then R ⊆ EH and
B ∩ EH = ∅. Moreover, every vertex u ∈ VG with dH(u) ≥ 22 is included in U .



Next, we find the set of edges xy with xu, yu ∈ R for some u in R that are
not included in a minimal outerplanar root.

Finding irrelevant edges. Set S = ∅. For each u ∈ U and each pair of distinct
x, y ∈ NG(u) such that ux, uy ∈ R do the following.

(i) If xy /∈ EG, then return a no-answer and stop.
(ii) If for x and y, there is no v ∈ NG(u) such that vu ∈ B and x, y ∈ NG(v),

then include xy in S.
(iii) If R ∩ S 6= ∅, then return a no-answer and stop.

Combining Lemmas 15 and 5, we obtain the following claim.

Lemma 16. If G has an outerplanar root, then Finding irrelevant edges
does not stop in Steps (i) and (iii), and if H is a minimal outerplanar root of G,
then S ∩ EH = ∅.

Assume that we did not stop during the execution of Finding irrelevant
edges. Let G′ = G− S. We show the following.

Lemma 17. The graph G has an outerplanar root if and only if there is a set
L ⊆ EG′ such that

(i) R ⊆ L, B ∩ L = ∅,
(ii) for any xy ∈ EG′ , xy ∈ L or there is z ∈ VG′ such that xz, yz ∈ L,

(iii) for any pair of distinct edges xz, yz ∈ L, xy ∈ EG′ or there is u ∈ U such
that xu, yu ∈ R,

(iv) the graph H = (VG, L) is outerplanar.

Proof. Let H be a minimal outerplanar root of G. By Lemma 16, EH ∩ S = ∅,
i.e., EH ⊆ EG′ . Let L = EH . It is straightforward to verify that (i)–(iv) are
fulfilled. Assume now that there is L ⊆ EG′ such that (i)–(iv) hold. Then we
have that H = (VG, L) is an outerplanar root of G. ut

To complete the description of the algorithm, it remains to show how to
check the existence of a set of edges L satisfying (i)–(iv) of Lemma 17 for given
G′, R and B. Notice that, if G has a minimal outerplanar root H, then G′ is
a subgraph of the graph G(H,U) constructed in Section 3.1 by Lemma 8. By
Lemma 12, there is a constant c that depends neither on G nor on H such that
tw(G(H,U)) ≤ c. Therefore, tw(G′) ≤ c for a yes-instance. We use Lemma 2
to verify whether it holds. If we obtain that tw(G′) > c, we conclude that
we have a no-instance and stop. Otherwise, we use the celebrated theorem of
Courcelle [5], which states that any problem that can be expressed in monadic
second-order logic can be solved in linear time on a graph of bounded treewidth.
It is straightforward to see that properties (i)–(iv) can be expressed in this logic.
In particular, to express outerplanarity in (iv), we can use Lemma 1 and the well-
known fact that the property that G contains F as a minor can be expressed
in monadic second-order logic if F is fixed (see, e.g., the book of Courcelle and
Engelfriet [6]). It immediately implies that we can decide in linear time whether



L exists or not. Notice that we can modify these arguments such that we do not
only check the existence of L but also find it. To do this, we can construct a
dynamic programming algorithm for graphs of bounded treewidth that finds L.

Now we evaluate the running time of our algorithm. Since it can be verified in
time O(n) whether two vertices of G are true twins, the classes of true twins can
be constructed in time O(n3). Then we can check whether each class contains
simplicial vertices in time O(n2). Therefore, Pendant reduction can be done
in time O(n3). For every vertex u, we can compute the distances between the
vertices of NG(u) in G − u in time O(n3). This implies that Labeling can be
done in time O(n4). Finding irrelevant edges also can be done in time O(n4)
by checking O(n2) pairs of vertices x and y. Then G′ can be constructed in
linear time. Finally, checking whether tw(G′) ≤ c and deciding whether there is
a set of edges L satisfying the required properties can be done in linear time by
Lemma 2 and Courcelle’s theorem [5] respectively.

Notice that we can use the same arguments to decide whether a graph G
has a square root H that belongs to some subclass H of the class of outerplanar
graphs. To be able to apply our structural lemmas, we only need the property
that H should be closed under edge deletions. Observe also that if the properties
defining H could be expressed in monadic second-order logic, then we can apply
Courcelle’s theorem [5]. It gives us the following corollary.

Corollary 1. For every subclass C of the class of outerplanar graphs that is
closed under edge deletions and can be expressed in monadic second-order logic,
it can be decided in time O(n4) whether an n-vertex graph G has a square root
H ∈ C.

4 Roots of Pathwidth at most two

Our main approach for solving Outerplanar root is general in the sense that
it can be adapted to find also square roots belonging to some other graph classes.
In this section, we show that there is an algorithm to decide in polynomial time
whether a graph has a square root of pathwidth at most 2. Notice that graphs
of pathwidth 1 are caterpillars, and that it can be decided in polynomial time
whether a graph G has a square root that is a caterpillar by an easy adaptation
of algorithms for finding square roots that are trees [22, 28].

We define the following problem:

Root of Pathwidth ≤ 2
Input: a graph G.
Question: is there a graph H such that pw(H) ≤ 2 and H2 = G?

The main difference between our algorithm for Root of Pathwidth ≤
2 and our algorithm for Outerplanar Root lies in the way properties of
the involved graph classes are used. To show the structural results needed for
this algorithm, we use the property that a potential square root has a path



decomposition of width at most 2, instead of the existence of an outerplanar
embedding used in the previous section.

We briefly sketch the proof of the following theorem.

Theorem 2. Root of Pathwidth ≤ 2 can be solved in time O(n6), where n
is the number of vertices of the input graph.

Proof. (Sketch.) Let G be the input graph. It is sufficient to solve Root of
Pathwidth ≤ 2 for connected graphs. Hence, we assume that G is connected
and has n ≥ 2 vertices. Notice that the class of graphs of pathwidth at most 2 is
closed under edge deletions. Therefore, by Observation 4, we can consider only
minimal square roots.

First, we preprocess G to reduce the number of true twins that a given vertex
of VG might have. To do so, we show that there is a constant c1 such that if W
is a set of true twins of G of size at least c1, then for any minimal square root
H of G with pw(H) ≤ 2, either W has a vertex that is pendant in H or W has
distinct nonadjacent vertices x, y, z with dH(x) = dH(y) = dH(y) = 2. It allows
us to show that if G has a set of true twins W of size at least c1 + 1, then by
the deletion of an arbitrary u ∈W from G, we obtain an equivalent instance of
Root of Pathwidth ≤ 2. From now on, we can assume that any set of true
twins of G has size at most c1. We need this to obtain forthcoming structural
properties.

In the next stage of our algorithm, we label some edges of G red or blue
in such a way that the edges labeled red are included in every minimal square
root of pathwidth at most 2 and the blue edges are not included in any minimal
square root of pathwidth at most 2. We denote by R the set of red edges and by
B the set of blue edges. We also construct a set of vertices U of G such that for
every u ∈ U , the edges incident to u are labeled red or blue.

The labeling is based on the following structural property. If there is u ∈
VG such that there are five distinct vertices v1, . . . , v5 in NG(u) that are at
distance at least 3 from each other in G − u, then for any square root H with
pw(H) ≤ 2, ux /∈ EH for x ∈ NG(u) if and only if there is i ∈ {1, . . . , 5} such
that distG−u(x, vi) ≥ 3. Respectively, if we find u ∈ VG with the aforementioned
property that there are five distinct vertices v1, . . . , v5 in NG(u) that are at
distance at least 3 from each other in G − u, then we include u in U and for
x ∈ NG(u), we label ux blue if there is i ∈ {1, . . . , 5} such that distG−u(x, vi) ≥ 3
and we label ux red otherwise. If we get inconsistent labelings, that is, some edge
should be labeled red and blue, then we stop and report that there is no square
root of pathwidth at most 2.

We show that there is a constant c2 such that, for a square root H of G with
pw(H) ≤ 2, if dH(u) ≥ c2, then u ∈ U and, therefore, all the edges of G incident
to u are labeled red or blue. It means that if u is a vertex of H of sufficiently
high degree, then for each edge of G incident to u, we distinguish whether this
edge is in a square root or not.

Next, we find the set of edges xy with xu, yu ∈ R which for some u in U
are not included in a minimal square root of pathwidth at most 2. To do it,



we use Observation 5 to show that if there is no z ∈ NG(u) with uz ∈ B such
that xz, yz ∈ EG, then xy /∈ EH for a minimal square root H of pathwidth at
most 2. Respectively, we label such edges xy blue. Again, if we get inconsistent
labelings, then we stop and report that there is no square root of pathwidth at
most 2.

Denote by S the set of edges labeled blue in this stage of the algorithm and
let G′ = G−S. We prove that if G has a square root of pathwidth at most 2, then
there is a constant c4 such that pw(G′) ≤ c4. The proof is based on the property
that every vertex of degree at least c2 in a (potential) square root of pathwidth
at most 2 is included in U . We can verify whether pw(G′) ≤ c4 in linear time
using Lemma 2. If pw(G′) > c4, then we stop and report that there is no square
root of pathwidth at most 2. Otherwise, we obtain a path decomposition of G′

of width at most c4.

Then, similarly to the proof of Theorem 1, we obtain that G has a square
root of pathwidth at most 2 if and only if there is a set L ⊆ EG′ such that

(i) R ⊆ L, B ∩ L = ∅,
(ii) for any xy ∈ EG′ , xy ∈ L or there is z ∈ VG′ such that xz, yz ∈ L,

(iii) for any distinct edges xz, yz ∈ L, xy ∈ EG′ or xy ∈ S,

(iv) the graph H = (VG, L) is such that pw(H) ≤ 2.

Notice that the properties (i)–(iv) can be expressed in monadic second-order
logic. In particular, (iv) can be expressed using the property that the class of
graphs of pathwidth at most 2 is defined by the set of forbidden minors given by
Kinnersley and Langston in [15]. Then we use Courcelle’s theorem [5] to decide
in linear time whether L exists or not.

To evaluate the running time, observe that to construct U , we consider each
vertex u ∈ VG and check whether there are 5 distinct vertices in NG(u) that are
at distance at least 3 from each other in G− u. This can be done in time O(n6)
and implies that the total running time is also O(n6). ut

5 Conclusions

We proved that H-Square Root is polynomial-time solvable when H is the
class of outerplanar graphs or the class of graphs of pathwidth at most 2. The
same result holds if H is any subclass of the class of outerplanar graphs that is
closed under edge deletion and that can be expressed in monadic second-order
logic (for instance, if H is the class of cactus graphs). We conclude by posing
two questions:

– Is H-Square Root polynomial-time solvable for every class H of graphs of
bounded pathwidth?

– Is H-Square Root polynomial-time solvable if H is the class of planar
graphs?
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