• xmlui.mirage2.page-structure.header.title
    • français
    • English
  • Help
  • Login
  • Language 
    • Français
    • English
View Item 
  •   BIRD Home
  • LAMSADE (UMR CNRS 7243)
  • LAMSADE : Publications
  • View Item
  •   BIRD Home
  • LAMSADE (UMR CNRS 7243)
  • LAMSADE : Publications
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Browse

BIRDResearch centres & CollectionsBy Issue DateAuthorsTitlesTypeThis CollectionBy Issue DateAuthorsTitlesType

My Account

LoginRegister

Statistics

Most Popular ItemsStatistics by CountryMost Popular Authors
Thumbnail - No thumbnail

Defective Coloring on Classes of Perfect Graphs

Belmonte, Rémy; Lampis, Michael; Mitsou, Valia (2022), Defective Coloring on Classes of Perfect Graphs, Discrete Mathematics and Theoretical Computer Science, 24, 1. 10.46298/dmtcs.4926

Type
Article accepté pour publication ou publié
External document link
https://arxiv.org/abs/1702.08903
Date
2022
Journal name
Discrete Mathematics and Theoretical Computer Science
Volume
24
Number
1
Publisher
DMTCS
Publication identifier
10.46298/dmtcs.4926
Metadata
Show full item record
Author(s)
Belmonte, Rémy
Laboratoire d'analyse et modélisation de systèmes pour l'aide à la décision [LAMSADE]
Lampis, Michael cc
Laboratoire d'analyse et modélisation de systèmes pour l'aide à la décision [LAMSADE]
Mitsou, Valia
Institut de Recherche en Informatique Fondamentale [IRIF (UMR_8243)]
Abstract (EN)
In Defective Coloring we are given a graph G and two integers χd, Δ∗ and are asked if we can χd-color G so that the maximum degree induced by any color class is at most Δ∗. We show that this natural generalization of Coloring is much harder on several basic graph classes. In particular, we show that it is NP-hard on split graphs, even when one of the two parameters χd, Δ∗ is set to the smallest possible fixed value that does not trivialize the problem (χd=2 or Δ∗=1). Together with a simple treewidth-based DP algorithm this completely determines the complexity of the problem also on chordal graphs. We then consider the case of cographs and show that, somewhat surprisingly, Defective Coloring turns out to be one of the few natural problems which are NP-hard on this class. We complement this negative result by showing that Defective Coloring is in P for cographs if either χd or Δ∗ is fixed; that it is in P for trivially perfect graphs; and that it admits a sub-exponential time algorithm for cographs when both χd and Δ∗ are unbounded.
Subjects / Keywords
Computer Science; Data Structures and Algorithms; Mathematics; Combinatorics

Related items

Showing items related by title and author.

  • Thumbnail
    Defective Coloring on Classes of Perfect Graphs 
    Belmonte, Rémy; Lampis, Michael; Mitsou, Valia (2017) Communication / Conférence
  • Thumbnail
    Parameterized (Approximate) Defective Coloring 
    Belmonte, Rémy; Lampis, Michael; Mitsou, Valia (2020) Article accepté pour publication ou publié
  • Thumbnail
    Token Sliding on Split Graphs 
    Belmonte, Rémy; Kim, Eun Jung; Lampis, Michael; Mitsou, Valia; Otachi, Yota; Sikora, Florian (2019) Communication / Conférence
  • Thumbnail
    Token Sliding on Split Graphs 
    Sikora, Florian; Belmonte, Rémy; Kim, Eun Jung; Lampis, Michael; Mitsou, Valia; Otachi, Yota (2020) Article accepté pour publication ou publié
  • Thumbnail
    Parameterized (Approximate) Defective Coloring 
    Belmonte, Rémy; Mitsou, Valia (2018) Communication / Conférence
Dauphine PSL Bibliothèque logo
Place du Maréchal de Lattre de Tassigny 75775 Paris Cedex 16
Phone: 01 44 05 40 94
Contact
Dauphine PSL logoEQUIS logoCreative Commons logo