Abstract
We study the problem of detecting data exfiltration in computer networks. We focus on the performance of optimal defense strategies with respect to an attacker’s knowledge about typical network behavior and his ability to influence the standard traffic. Internal attackers know the typical upload behavior of the compromised host and may be able to discontinue standard uploads in favor of the exfiltration. External attackers do not immediately know the behavior of the compromised host, but they can learn it from observations.
We model the problem as a sequential game of imperfect information, where the network administrator selects the thresholds for the detector, while the attacker chooses how much data to exfiltrate in each time step. We present novel algorithms for approximating the optimal defense strategies in the form of Stackelberg equilibria. We analyze the scalability of the algorithms and efficiency of the produced strategies in a case study based on real-world uploads of almost six thousand users to Google Drive. We show that with the computed defense strategies, the attacker exfiltrates 2–3 times less data than with simple heuristics; randomized defense strategies are up to 30% more effective than deterministic ones, and substantially more effective defense strategies are possible if the defense is customized for groups of hosts with similar behavior.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
Hosts are non-strategic actors in the game considered to be part of the environment.
References
Grand theft data data exfiltration study: Actors, tactics, and detection. Technical report, McAfee, Inc. (2015). https://www.mcafee.com/us/resources/reports/rp-data-exfiltration.pdf
Bowen, B.M., Hershkop, S., Keromytis, A.D., Stolfo, S.J.: Baiting inside attackers using decoy documents. In: Chen, Y., Dimitriou, T.D., Zhou, J. (eds.) SecureComm 2009. LNICST, vol. 19, pp. 51–70. Springer, Heidelberg (2009). doi:10.1007/978-3-642-05284-2_4
Braziunas, D.: Pomdp solution methods. University of Toronto, Technical Report (2003)
Comesana, P., Pérez-Freire, L., Pérez-González, F.: Blind newton sensitivity attack. IEE Proc.-Inf. Secur. 153(3), 115–125 (2006)
Fadolalkarim, D., Sallam, A., Bertino, E.: Pandde: provenance-based anomaly detection of data exfiltration. In: Proceedings of the Sixth ACM Conference on Data and Application Security and Privacy, pp. 267–276. ACM (2016)
Feder, T., Nazerzadeh, H., Saberi, A.: Approximating nash equilibria using small-support strategies. In: Proceedings of the 8th ACM Conference on Electronic Commerce, pp. 352–354. ACM (2007)
Wikipedia foundation: List of data breaches. https://en.wikipedia.org/wiki/List_of_data_breaches
Horák, K., Bošanský, B.: A point-based approximate algorithm for one-sided partially observable pursuit-evasion games. In: Zhu, Q., Alpcan, T., Panaousis, E., Tambe, M., Casey, W. (eds.) GameSec 2016. LNCS, vol. 9996, pp. 435–454. Springer, Cham (2016). doi:10.1007/978-3-319-47413-7_25
Laszka, A., Abbas, W., Sastry, S.S., Vorobeychik, Y., Koutsoukos, X.: Optimal thresholds for intrusion detection systems. In: Proceedings of the Symposium and Bootcamp on the Science of Security, pp. 72–81. ACM (2016)
Lee, S.Y., Low, W.L., Wong, P.Y.: Learning fingerprints for a database intrusion detection system. In: Gollmann, D., Karjoth, G., Waidner, M. (eds.) ESORICS 2002. LNCS, vol. 2502, pp. 264–279. Springer, Heidelberg (2002). doi:10.1007/3-540-45853-0_16
Lisý, V., Kessl, R., Pevný, T.: Randomized operating point selection in adversarial classification. In: Calders, T., Esposito, F., Hüllermeier, E., Meo, R. (eds.) ECML PKDD 2014. LNCS, vol. 8725, pp. 240–255. Springer, Heidelberg (2014). doi:10.1007/978-3-662-44851-9_16
Liu, D., Wang, X., Camp, J.: Game-theoretic modeling and analysis of insider threats. Int. J. Crit. Infrastruct. Prot. 1, 75–80 (2008)
Liu, S., Kuhn, R.: Data loss prevention. IT Prof. 12(2), 10–13 (2010)
Liu, Y., Corbett, C., Chiang, K., Archibald, R., Mukherjee, B., Ghosal, D.: Sidd: a framework for detecting sensitive data exfiltration by an insider attack. In: 42nd Hawaii International Conference on System Sciences, HICSS 2009, pp. 1–10. IEEE (2009)
Mc Carthy, S.M., Sinha, A., Tambe, M., Manadhata, P.: Data exfiltration detection and prevention: virtually distributed POMDPs for practically safer networks. In: Zhu, Q., Alpcan, T., Panaousis, E., Tambe, M., Casey, W. (eds.) GameSec 2016. LNCS, vol. 9996, pp. 39–61. Springer, Cham (2016). doi:10.1007/978-3-319-47413-7_3
Rubner, Y., Tomasi, C., Guibas, L.J.: The earth mover’s distance as a metric for image retrieval. Int. J. Comput. Vis. 40(2), 99–121 (2000)
Shoham, Y., Leyton-Brown, K.: Multiagent Systems: Algorithmic, Game-theoretic, and Logical Foundations. Cambridge University Press (2008)
Smith, T., Simmons, R.: Heuristic search value iteration for pomdps. In: Proceedings of the 20th Conference on Uncertainty in Artificial Intelligence, pp. 520–527. AUAI Press (2004)
Zander, S., Armitage, G., Branch, P.: A survey of covert channels and countermeasures in computer network protocols. IEEE Commun. Surv. Tutorials 9(3), 44–57 (2007)
Acknowledgments
This research was supported by the Czech Science Foundation (grant no. 15-23235S).
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2017 Springer International Publishing AG
About this paper
Cite this paper
Durkota, K., Lisý, V., Kiekintveld, C., Horák, K., Bošanský, B., Pevný, T. (2017). Optimal Strategies for Detecting Data Exfiltration by Internal and External Attackers. In: Rass, S., An, B., Kiekintveld, C., Fang, F., Schauer, S. (eds) Decision and Game Theory for Security. GameSec 2017. Lecture Notes in Computer Science(), vol 10575. Springer, Cham. https://doi.org/10.1007/978-3-319-68711-7_10
Download citation
DOI: https://doi.org/10.1007/978-3-319-68711-7_10
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-68710-0
Online ISBN: 978-3-319-68711-7
eBook Packages: Computer ScienceComputer Science (R0)