Skip to main content

Evolutionary Computation Theory for Remote Sensing Image Clustering: A Survey

  • Conference paper
  • First Online:
Simulated Evolution and Learning (SEAL 2017)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 10593))

Included in the following conference series:

Abstract

This paper presents a survey of evolutionary computation theory for remote sensing image clustering. With the ongoing development of Earth observation techniques, remote sensing data has entered the era of big data, so it is difficult for researchers to get more prior knowledge. In recent years, many experts and scholars have a strong interest in remote sensing clustering due to it does not require training samples. However, remote sensing image clustering has always been a challenging task because of the inherent complexity of remote sensing images, the huge amount of data and so on. Normally, the clustering problem of remote sensing images is transformed into the optimization problem of fuzzy clustering objective function, the goal of which lies in the identification of correct cluster centers in the eigenspace. But traditional clustering approaches belong to hill climbing methods, which are greatly affected by initial values and easily get stuck in local optima. Evolutionary computation techniques are inspired by biological evolution, which can provide possible solutions to find the better clustering centers. So, researchers have carried out a series of related studies. Here, we provide an overview, including: (1) evolutionary single-objective; (2) evolutionary multi-objective; (3) memetic algorithm.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Jain, A.K.: Data clustering: 50 years beyond k-means. In: Daelemans, W., Goethals, B., Morik, K. (eds.) ECML PKDD 2008. LNCS, vol. 5211, pp. 3–4. Springer, Heidelberg (2008). doi:10.1007/978-3-540-87479-9_3

    Chapter  Google Scholar 

  2. Hruschka, E.R., Campello, R.J.G.B., Freitas, A.A.: A survey of evolutionary algorithms for clustering. IEEE Trans. Syst. Man Cybern. Part C 39(2), 133–155 (2009)

    Article  Google Scholar 

  3. Zhang, M., Ma, J., Gong, M., Li, H., Liu, J.: Memetic algorithm based feature selection for hyperspectral images classification. In: 2017 IEEE Congress on Evolutionary Computation (CEC), pp. 495–502. IEEE (2017)

    Google Scholar 

  4. Yu, H., Jiao, L., Liu, F.: CRIM-FCHO: SAR image two-stage segmentation with multifeature ensemble. IEEE Trans. Geosci. Remote Sens. 54(4), 2400–2423 (2016)

    Article  Google Scholar 

  5. Jiao, L., Tang, X., Hou, B., Wang, S.: SAR images retrieval based on semantic classification and region-based similarity measure for earth observation. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 8(8), 3876–3891 (2015)

    Article  Google Scholar 

  6. Ghosh, A., Mishra, N.S., Ghosh, S.: Fuzzy clustering algorithms for unsupervised change detection in remote sensing images. Inf. Sci. 181(4), 699–715 (2011)

    Article  Google Scholar 

  7. Murthy, C.A., Chowdhury, N.: In search of optimal clusters using genetic algorithms. Pattern Recogn. Lett. 17(8), 825–832 (1996)

    Article  Google Scholar 

  8. Das, S., Abraham, A., Konar, A.: Automatic clustering using an improved differential evolution algorithm. IEEE Trans. Syst. Man Cybern. Part A Syst. Hum. 38(1), 218–237 (2008)

    Article  Google Scholar 

  9. Zhang, S., Zhong, Y., Zhang, L.: An automatic fuzzy clustering algorithm based on self-adaptive differential evolution for remote sensing image. Acta Geodaetica Cartogr. Sin. 42(2), 239–246 (2013)

    Google Scholar 

  10. Zhong, Y., Zhang, L.: A new fuzzy clustering algorithm based on clonal selection for land cover classification. Math. Probl. Eng. 2011(2), 253–266 (2011)

    Google Scholar 

  11. Bandyopadhyay, S.: Satellite image classification using genetically guided fuzzy clustering with spatial information. Int. J. Remote Sens. 26(3), 579–593 (2005)

    Article  MathSciNet  Google Scholar 

  12. Bandyopadhyay, S.: Genetic algorithms for clustering and fuzzy clustering. Wiley Interdisc. Rev. Data Min. Knowl. Discov. 1(6), 524–531 (2011)

    Article  Google Scholar 

  13. Pakhira, M.K., Bandyopadhyay, S., Maulik, U.: A study of some fuzzy cluster validity indices, genetic clustering and application to pixel classification. Fuzzy Sets Syst. 155(2), 191–214 (2005)

    Article  MathSciNet  Google Scholar 

  14. Ozturk, C., Hancer, E., Karaboga, D.: Dynamic clustering with improved binary artificial bee colony algorithm. Appl. Soft Comput. 28(C), 69–80 (2015)

    Article  Google Scholar 

  15. Ma, A., Zhong, Y., Zhang, L.: Adaptive differential evolution fuzzy clustering algorithm with spatial information and kernel metric for remote sensing imagery. In: Yin, H., Tang, K., Gao, Y., Klawonn, F., Lee, M., Weise, T., Li, B., Yao, X. (eds.) IDEAL 2013. LNCS, vol. 8206, pp. 278–285. Springer, Heidelberg (2013). doi:10.1007/978-3-642-41278-3_34

    Chapter  Google Scholar 

  16. Zhong, Y., Ma, A., Zhang, L.: An adaptive memetic fuzzy clustering algorithm with spatial information for remote sensing imagery. IEEE J. Sel. Top. Appl. Earth Observ. Remote Sens. 7(4), 1235–1248 (2014)

    Article  Google Scholar 

  17. Marler, R.T., Arora, J.S.: Survey of multi-objective optimization methods for engineering. Struct. Multidiscip. Optim. 26(6), 369–395 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  18. Deb, K.: Scope of stationary multi-objective evolutionary optimization: a case study on a hydro-thermal power dispatch problem. J. Glob. Optim. 41(4), 479–515 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  19. Wagner, T., Beume, N., Naujoks, B.: Pareto-, aggregation-, and indicator-based methods in many-objective optimization. In: Obayashi, S., Deb, K., Poloni, C., Hiroyasu, T., Murata, T. (eds.) EMO 2007. LNCS, vol. 4403, pp. 742–756. Springer, Heidelberg (2007). doi:10.1007/978-3-540-70928-2_56

    Chapter  Google Scholar 

  20. Bandyopadhyay, S., Maulik, U., Mukhopadhyay, A.: Multiobjective genetic clustering for pixel classification in remote sensing imagery. IEEE Trans. Geosci. Remote Sens. 45(5), 1506–1511 (2007)

    Article  Google Scholar 

  21. Deb, K., Pratap, A., Agarwal, S., et al.: A fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE Trans. Evol. Comp. 6(2), 182–197 (2002)

    Article  Google Scholar 

  22. Mukhopadhyay, A., Maulik, U.: Unsupervised pixel classification in satellite imagery using multiobjective fuzzy clustering combined with SVM classifier. IEEE Trans. Geosci. Remote Sens. 47(4), 1132–1138 (2009)

    Article  Google Scholar 

  23. Kaushik, S., Debarati, K., Sayan, G., Swagatam, D., Ajith, A., Han, S.Y.: Multi-objective differential evolution for automatic clustering with application to micro-array data analysis. Sensors 9(5), 3981–4004 (2009)

    Article  Google Scholar 

  24. Paoli, A., Melgani, F., Pasolli, E.: Clustering of hyperspectral images based on multiobjective particle swarm optimization. IEEE Trans. Geosci. Remote Sens. 47(12), 4175–4188 (2009)

    Article  Google Scholar 

  25. Li, Y., Feng, S., Zhang, X., Jiao, L.: SAR image segmentation based on quantum-inspired multiobjective evolutionary clustering algorithm. Inf. Process. Lett. 114(6), 287–293 (2014)

    Article  MATH  Google Scholar 

  26. Naeini, A.A., Homayouni, S., Saadatseresht, M.: Improving the dynamic clustering of hyperspectral data based on the integration of swarm optimization and decision analysis. IEEE J. Sel. Top. Appl. Earth Observ. Remote Sens. 7(6), 2161–2173 (2014)

    Article  Google Scholar 

  27. Zhong, Y., Zhang, S., Zhang, L.: Automatic fuzzy clustering based on adaptive multi-objective differential evolution for remote sensing imagery. IEEE J. Sel. Top. Appl. Earth Observ. Remote Sens. 6(5), 2290–2301 (2013)

    Article  Google Scholar 

  28. Luo, J., Jiao, L., Lozano, J.A.: A sparse spectral clustering framework via multiobjective evolutionary algorithm. IEEE Trans. Evol. Comput. 20(3), 418–433 (2016)

    Article  Google Scholar 

  29. Li, L., Yao, X., Stolkin, R., Gong, M., He, S.: An evolutionary multiobjective approach to sparse reconstruction. IEEE Trans. Evol. Comput. 18(6), 827–845 (2014)

    Article  Google Scholar 

  30. Črepinšek, M., Liu, S.H., Mernik, M.: Exploration and exploitation in evolutionary algorithms: a survey. ACM Comput. Surv. 45(3), 1–33 (2013)

    MATH  Google Scholar 

  31. Moscato, P.: On evolution, search, optimization, genetic algorithms and martial arts: towards memetic algorithms. Caltech concurrent computation program. C3P Report 826 (1989)

    Google Scholar 

  32. Chen, X., Ong, Y.S., Lim, M.H., Tan, K.C.: A multi-facet survey on memetic computation. IEEE Trans. Evol. Comput. 15(5), 591–607 (2011)

    Article  Google Scholar 

  33. Zhu, Z., Jia, S., Ji, Z.: Towards a memetic feature selection paradigm. IEEE Comput. Intell. Mag. 5(2), 41–53 (2010)

    Article  Google Scholar 

  34. Chen, X., Feng, L., Soon Ong, Y.: A self-adaptive memeplexes robust search scheme for solving stochastic demands vehicle routing problem. Int. J. Syst. Sci. 43(7), 1347–1366 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  35. Özcan, E., Başaran, C.: A case study of memetic algorithms for constraint optimization. Soft. Comput. 13(8), 871 (2009)

    Article  Google Scholar 

  36. Jiao, L., Gong, M., Wang, S., Hou, B.: Natural and remote sensing image segmentation using memetic computing. IEEE Comput. Intell. Mag. 5(2), 78–91 (2010)

    Article  Google Scholar 

  37. Ma, A., Zhong, Y., Zhang, L.: Adaptive multiobjective memetic fuzzy clustering algorithm for remote sensing imagery. IEEE Trans. Geosci. Remote Sens. 53(8), 4202–4217 (2015)

    Article  Google Scholar 

  38. Ong, Y.S., Lim, M.H., Zhu, N., Wong, K.W.: Classification of adaptive memetic algorithms: a comparative study. IEEE Trans. Syst. Man Cybern. Part B Cybern. Publ. IEEE Syst. Man Cybern. Soc. 36(1), 141–152 (2006)

    Article  Google Scholar 

  39. Ong, Y.S., Lim, M.H., Chen, X.: Research frontier: memetic computation-past, present and future. IEEE Comput. Intell. Mag. 5(2), 24–31 (2010)

    Article  Google Scholar 

  40. Gong, M., Li, H., Jiang, X.: A multi-objective optimization framework for ill-posed inverse problems in image processing ☆. CAAI Trans. Intell. Technol. 1(3), 225–240 (2016)

    Article  Google Scholar 

  41. Kabanikhin, S.I.: Definitions and examples of inverse and ill-posed problems. J. Inverse Ill-posed Probl. 16(4), 317–357 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  42. Hauschild, M., Pelikan, M.: An introduction and survey of estimation of distribution algorithms. Swarm Evol. Comput. 1(3), 111–128 (2011)

    Article  Google Scholar 

  43. Zhou, A., Zhang, Q., Jin, Y.: Approximating the set of pareto-optimal solutions in both the decision and objective spaces by an estimation of distribution algorithm. IEEE Trans. Evol. Comput. 13(5), 1167–1189 (2009)

    Article  Google Scholar 

  44. Zhang, J., Zhou, A., Zhang, G.: A multiobjective evolutionary algorithm based on decomposition and preselection. In: Gong, M., Pan, L., Song, T., Tang, K., Zhang, X. (eds.) BIC-TA 2015. CCIS, vol. 562, pp. 631–642. Springer, Heidelberg (2015). doi:10.1007/978-3-662-49014-3_56

    Chapter  Google Scholar 

  45. Lin, X., Zhang, Q., Kwong, S.: A decomposition based multiobjective evolutionary algorithm with classification. In: 2016 IEEE Congress on Evolutionary Computation (CEC), Canada, pp. 3292–3299. IEEE (2016). doi:10.1109/CEC.2016.7744206

  46. Mussi, L., Daolio, F., Cagnoni, S.: Evaluation of parallel particle swarm optimization algorithms within the CUDA TM architecture. Inf. Sci. 181(20), 4642–4657 (2011)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ailong Ma .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Wan, Y., Zhong, Y., Ma, A., Zhang, L. (2017). Evolutionary Computation Theory for Remote Sensing Image Clustering: A Survey. In: Shi, Y., et al. Simulated Evolution and Learning. SEAL 2017. Lecture Notes in Computer Science(), vol 10593. Springer, Cham. https://doi.org/10.1007/978-3-319-68759-9_43

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-68759-9_43

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-68758-2

  • Online ISBN: 978-3-319-68759-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics