Skip to main content

A Knee Point Driven Particle Swarm Optimization Algorithm for Sparse Reconstruction

  • Conference paper
  • First Online:
Simulated Evolution and Learning (SEAL 2017)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 10593))

Included in the following conference series:

Abstract

Sparse reconstruction is a technique to reconstruct sparse signal from a small number of samples. In sparse reconstruction problems, the sparsity and measurement error should be minimized simultaneously, therefore they can be solved by multi-objective optimization algorithms. Most multi-objective optimizers aim to obtain the complete Pareto front. However only solutions in knee region of Pareto front are preferred in sparse reconstruction problems. It is a waste of time to obtain the whole Pareto front. In this paper, a knee point driven multi-objective particle swarm optimization algorithm (KnMOPSO) is proposed to solve sparse reconstruction problems. KnMOPSO aims to find the local part of Pareto front so that it can solve the sparse reconstruction problems fast and accurately. In KnMOPSO personal best particles and global best particle are selected with knee point selection scheme. In addition, solutions which are more likely to be knee points are preferred to others.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Candès, E.J., Romberg, J., Tao, T.: Robust uncertainty principles: exact signal reconstruction from highly incomplete frequency information. IEEE Trans. Inf. Theory 52, 489–509 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  2. Lu, X., Li, X.: Group sparse reconstruction for image segmentation. Neurocomputing 136, 41–48 (2014)

    Article  Google Scholar 

  3. Shi, Y., Gao, Y., Liao, S., Zhang, D., Gao, Y., Shen, D.: A learning-based CT prostate segmentation method via joint transductive feature selection and regression. Neurocomputing 173, 317–331 (2016)

    Article  Google Scholar 

  4. Xu, Y., Zhang, D., Yang, J., Yang, J.Y.: A two-phase test sample sparse representation method for use with face recognition. IEEE Trans. Circ. Syst. Video Technol. 21, 1255–1262 (2011)

    Article  MathSciNet  Google Scholar 

  5. Coello, C.A.C.: Treating constraints as objectives for single-objective evolutionary optimization. Eng. Optim.+A35 32, 275–308 (2000)

    Article  Google Scholar 

  6. Li, L., Yao, X., Stolkin, R., Gong, M., He, S.: An evolutionary multiobjective approach to sparse reconstruction. IEEE Trans. Evol. Comput. 18, 827–845 (2014)

    Article  Google Scholar 

  7. Deb, K., Pratap, A., Agarwal, S., Meyarivan, T.: A fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE Trans. Evol. Comput. 6, 182–197 (2002)

    Article  Google Scholar 

  8. Li, H., Su, X., Xu, Z., Zhang, Q.: MOEA/D with iterative thresholding algorithm for sparse optimization problems. In: Coello, C.A.C., Cutello, V., Deb, K., Forrest, S., Nicosia, G., Pavone, M. (eds.) PPSN 2012. LNCS, vol. 7492, pp. 93–101. Springer, Heidelberg (2012). doi:10.1007/978-3-642-32964-7_10

    Chapter  Google Scholar 

  9. Zhang, Q., Li, H.: MOEA/D: a multiobjective evolutionary algorithm based on decomposition. IEEE Trans. Evol. Comput. 11, 712–731 (2007)

    Article  Google Scholar 

  10. Zhang, C., Tan, K.C., Gao, L., Wu, Q.: Multi-objective evolutionary algorithm based on decomposition for engineering optimization. J. Zhengzhou Univ. (Eng. Sci.) 36, 38–46 (2015)

    MathSciNet  Google Scholar 

  11. Zhang, X., Tian, Y., Jin, Y.: A knee point-driven evolutionary algorithm for many-objective optimization. IEEE Trans. Evol. Comput. 19, 761–776 (2015)

    Article  Google Scholar 

  12. Berg, E., Friedlander, M.P.: Sparco. (http://www.cs.ubc.ca/labs/scl/sparco/)

  13. Kennedy, J.: Particle swarm optimization. In: Sammut, C., Webb, G.I. (eds.) Encyclopedia of Machine Learning, pp. 760–766. Springer, Heidelberg (2011). doi:10.1007/978-0-387-30164-8_630

    Google Scholar 

  14. Yan, X., Yan, J., Feng, Y.: Gradient and particle swarm optimization based hierarchical cluster algorithm in WSN. J. Zhengzhou Univ. (Eng. Sci.) 2, 007 (2016)

    Google Scholar 

  15. Branke, J., Deb, K., Dierolf, H., Osswald, M.: Finding knees in multi-objective optimization. In: Yao, X., Burke, E.K., Lozano, J.A., Smith, J., Merelo-Guervós, J.J., Bullinaria, J.A., Rowe, J.E., Tiňo, P., Kabán, A., Schwefel, H.-P. (eds.) PPSN 2004. LNCS, vol. 3242, pp. 722–731. Springer, Heidelberg (2004). doi:10.1007/978-3-540-30217-9_73

    Chapter  Google Scholar 

  16. Xu, Z., Chang, X., Xu, F., Zhang, H.: L\(_{1/2}\) regularization: a thresholding representation theory and a fast solver. IEEE Trans. Neural Netw. Learn. Syst. 23, 1013–1027 (2012)

    Article  Google Scholar 

  17. Clerc, M., Kennedy, J.: The particle swarm-explosion, stability, and convergence in a multidimensional complex space. IEEE Trans. Evol. Comput. 6, 58–73 (2002)

    Article  Google Scholar 

  18. Mallat, S.G., Zhang, Z.: Matching pursuits with time-frequency dictionaries. IEEE Trans. Signal Process. 41, 3397–3415 (1993)

    Article  MATH  Google Scholar 

  19. Tropp, J., Gilbert, A.C.: Signal recovery from partial information via orthogonal matching pursuit. IEEE Trans. Inf. Theory 53, 4655–4666 (2007)

    Article  MATH  Google Scholar 

  20. Malioutov, D.M., Cetin, M., Willsky, A.S.: Homotopy continuation for sparse signal representation. In: 2005 IEEE International Conference on Proceedings of Acoustics, Speech, and Signal Processing (ICASSP 2005), pp. 733–736. IEEE (2005)

    Google Scholar 

  21. Li, H., Fan, Y., Zhang, Q., Xu, Z., Deng, J.: A multi-phase multiobjective approach based on decomposition for sparse reconstruction. In: IEEE Congress on Evolutionary Computation, pp. 601–608. IEEE (2016)

    Google Scholar 

Download references

Acknowledgement

We acknowledge financial support by National Natural Science Foundation of China (61473266, 61673404, 61305080, and U1304602), China Postdoctoral Science Foundation (No. 2014M552013), Project supported by the Research Award Fund for Outstanding Young Teachers in Henan Provincial Institutions of Higher Education of China (2014GGJS-004) and Program for Science and Technology Innovation Talents in Universities of Henan Province in China (16HASTIT041).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jing Liang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Yue, C., Liang, J., Qu, B., Song, H., Li, G., Han, Y. (2017). A Knee Point Driven Particle Swarm Optimization Algorithm for Sparse Reconstruction. In: Shi, Y., et al. Simulated Evolution and Learning. SEAL 2017. Lecture Notes in Computer Science(), vol 10593. Springer, Cham. https://doi.org/10.1007/978-3-319-68759-9_74

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-68759-9_74

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-68758-2

  • Online ISBN: 978-3-319-68759-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics