Abstract
Sensor networks are able to generate large amounts of unsupervised multivariate time series data. Understanding this data is a non-trivial task: not only patterns in the time series for individual variables can be of interest, it can also be important to understand the relations between patterns in different variables. In this paper, we present a novel data mining task that aims for a better understanding of the prominent patterns present in multivariate time series: multivariate time series biclustering. This task involves the discovery of subsets of variables that show consistent behavior in a number of shared time segments. We present a biclustering method, BiclusTS, to solve this task. Extensive experimental results show that, in contrast to several traditional biclustering methods, with our method the discovered biclusters respect the temporal nature of the data. In the spirit of reproducible research, code, datasets and an experimentation tool are made publicly available to help the dissemination of the method.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Sugiyama, M., Kanamori, T., Suzuki, T., Plessis, M., Liu, S., Takeuchi, I.: Density-difference estimation. In: Proceedings of NIPS, pp. 683–691 (2012)
Cheng, Y., Church, G.: Biclustering of expression data. In: Proceedings of Eighth International Conference on Intelligent Systems for Molecular Biology, pp. 93–103 (2000)
Madeira, S., Oliveira, A.: Biclustering algorithms for biological data analysis: a survey. J. IEEE/ACM Trans. Comput. Biol. Bioinform. 1, 24–45 (2004)
Prelić, A., Bleuler, S., Zimmermann, P., Wille, A., Bühlmann, P., Gruissem, W., Hennig, L., Thiele, L., Zitzler, E.: A systematic comparison and evaluation of biclustering methods for gene expression data. J. Bioinform. 22, 1122–1129 (2006)
Kluger, Y., Basri, R., Chang, J.T., Gerstein, M.: Spectral biclustering of microarray cancer data: co-clustering genes and conditions. J. Genome Res. 13, 703–716 (2003)
Barkow, S., Bleuler, S., Prelić, A., Zimmermann, P., Zitzler, E.: BicAT: a biclustering analysis toolbox. J. Bioinform. 22, 1282–1283 (2006)
Turner, H., Bailey, T., Krzanowski, W.: Improved biclustering of microarray data demonstrated through systematic performance tests. J. Comput. Stat. Data Anal. 48, 235–254 (2003)
Murali, T., Kasif, S.: Extracting conserved gene expression motifs from gene expression data. In: Proceedings of Pacific Symposium on Biocomputing, pp. 77–88 (2003)
Kaiser, S., Leisch, F.: A toolbox for bicluster analysis in R. In: Proceedings of UseR, p. 101 (2008)
Kaiser, S., Leisch, F.: A generalized motif bicluster algorithm. In: Proceedings of UseR, p. 101 (2009)
Vespier, U., Nijssen, S., Knobbe, A.: Mining characteristic multi-scale motifs in sensor-based time series. In: Proceedings of CIKM, pp. 2393–2398 (2013)
Cachucho, R., Liu, K., Nijssen, S., Knobbe, A.: Bipeline: a web-based visualization tool for biclustering of multivariate time series. In: Proceedings of ECML PKDD, pp. 12–16 (2016)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2017 Springer International Publishing AG
About this paper
Cite this paper
Cachucho, R., Nijssen, S., Knobbe, A. (2017). Biclustering Multivariate Time Series. In: Adams, N., Tucker, A., Weston, D. (eds) Advances in Intelligent Data Analysis XVI. IDA 2017. Lecture Notes in Computer Science(), vol 10584. Springer, Cham. https://doi.org/10.1007/978-3-319-68765-0_3
Download citation
DOI: https://doi.org/10.1007/978-3-319-68765-0_3
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-68764-3
Online ISBN: 978-3-319-68765-0
eBook Packages: Computer ScienceComputer Science (R0)