Skip to main content

Mining Co-location Patterns with Dominant Features

  • Conference paper
  • First Online:
Web Information Systems Engineering – WISE 2017 (WISE 2017)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 10569))

Included in the following conference series:

  • 1488 Accesses

Abstract

The spatial co-location pattern mining discovers the subsets of spatial features which are located together frequently in geography. Most of the studies in this field use prevalence to measure a co-location pattern’s popularity, namely the frequencies of a spatial feature set participating in a spatial database. However, in some cases, users are not only interested in identifying the prevalence of a feature set, but also the features playing the dominant role in a pattern. In this paper, we focus on mining dominant-feature co-location pattern (DFCP). We firstly propose a new measure, namely disparity, to measure the disparity of features in a pattern. Secondly, we formulate the DFCP mining problem to determine DFCP and extract dominant features. Thirdly, an efficient algorithm is proposed for mining DFCP. Finally, we offer an experimental evaluation of the proposed algorithms on both real data sets and synthetic data sets in terms of efficiency, mining results and significance. The results show that our method can effectively discover DFCPs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Similar content being viewed by others

References

  1. Huang, Y., Shekhar, S., Xiong, H.: Discovering co-location patterns from spatial data sets: a general approach. TKDE 16(12), 1472–1485 (2004)

    Google Scholar 

  2. Yoo, J.S., Shekhar, S.: A joinless approach for mining spatial co-location patterns. TKDE 18(10), 1323–1337 (2006)

    Google Scholar 

  3. Yoo, J.S., Shekhar, S., Smith, J., Kumquat, T.P.: A partial join approach for mining co-location patterns. In: Proceedings of the 12th Annual ACM International Workshop on Geographic Information Systems (GIS 2004), pp. 241–249 (2004)

    Google Scholar 

  4. Wang, L., Bao, Y., Lu, J., Yip, J.: A new Join-less approach for co-location pattern mining. In: 8th IEEE International Conference on Computer and Information Technology, pp. 197–202. IEEE Press, New York (2008)

    Google Scholar 

  5. Wang, L., Bao, Y., Lu, Z.: Efficient discovery of spatial co-location patterns using the iCPI-tree. Open Inf. Syst. J. 3(1), 69–80 (2009)

    Google Scholar 

  6. Wang, L., Zhou, L., Lu, J., Yip, J.: An order-Clique based approach for mining maximal co-locations. Inf. Sci. 179(19), 3370–3382 (2009)

    Article  Google Scholar 

  7. Yoo, J.S., Bow, M.: Mining top-k closed co-location patterns. In: IEEE International Conference on Spatial Data Mining and Geographical Knowledge Services, pp. 100–105. IEEE Press, New York (2011)

    Google Scholar 

  8. Liu, B., Chen, L., Liu, C., Zhang, C., Qiu, W.: RCP mining: towards the summarization of spatial co-location patterns. In: Claramunt, C., Schneider, M., Wong, R.C.-W., Xiong, L., Loh, W.-K., Shahabi, C., Li, K.-J. (eds.) SSTD 2015. LNCS, vol. 9239, pp. 451–469. Springer, Cham (2015). doi:10.1007/978-3-319-22363-6_24

    Chapter  Google Scholar 

  9. Wang, X., Wang, L., Lu, J., Zhou, L.: Effectively updating high utility co-location patterns in evolving spatial databases. In: Cui, B., Zhang, N., Xu, J., Lian, X., Liu, D. (eds.) WAIM 2016. LNCS, vol. 9658, pp. 67–81. Springer, Cham (2016). doi:10.1007/978-3-319-39937-9_6

    Chapter  Google Scholar 

  10. Bao, X., Wang, L., Chen, H.: Ontology-based interactive post-mining of interesting co-location patterns. In: Li, F., Shim, K., Zheng, K., Liu, G. (eds.) APWeb 2016. LNCS, vol. 9932, pp. 406–409. Springer, Cham (2016). doi:10.1007/978-3-319-45817-5_35

    Chapter  Google Scholar 

  11. Yu, W.: Spatial co-location pattern mining for location-based services in road networks. Expert Syst. Appl. 46, 324–335 (2016)

    Article  Google Scholar 

  12. Yu, W., Ai, T., He, Y.: Spatial co-location pattern mining of facility points-of-interest improved by network neighborhood and distance decay effects. Int. J. Geogr. Inf. Sci. 31(2), 280–296 (2016)

    Article  Google Scholar 

  13. Flouvat, F., Soc, J., Desmier, E.: Domain-driven co-location mining. GeoInformatica 19(1), 147–183 (2015)

    Article  Google Scholar 

  14. Shekhar, S., Huang, Y.: Discovering spatial co-location patterns: a summary of results. In: Jensen, C.S., Schneider, M., Seeger, B., Tsotras, V.J. (eds.) SSTD 2001. LNCS, vol. 2121, pp. 236–256. Springer, Heidelberg (2001). doi:10.1007/3-540-47724-1_13

    Chapter  MATH  Google Scholar 

  15. Mohan, P., Shekhar, S., Shine, J.A.: A neighborhood graph based approach to regional co-location pattern discovery: a summary of results. In: 19th ACM SIGSPATIAL International Conference on Advances in Geographic Information Systems, pp. 122–132. ACM (2011)

    Google Scholar 

  16. Lu, J., Wang, L., Fang, Y., Li, M.: Mining competitive pairs hidden in co-location patterns from dynamic spatial databases. In: Kim, J., Shim, K., Cao, L., Lee, J.-G., Lin, X., Moon, Y.-S. (eds.) PAKDD 2017. LNCS, vol. 10235, pp. 467–480. Springer, Cham (2017). doi:10.1007/978-3-319-57529-2_37

    Chapter  Google Scholar 

  17. Lu, J., Wang, L., Fang, Y.: Mining causal rules hidden in spatial co-locations based on dynamic spatial databases. In: IEEE 2016 International Conference on Computer, Information and Telecommunication Systems, pp. 1–6. IEEE Press, New York (2016)

    Google Scholar 

  18. Muhaya, F.: Dominant factors in national information security policies. J. Comput. Sci. 6(7), 808–812 (2010)

    Article  Google Scholar 

  19. Peng, Y., Dong, H.: Dominant factors mining in power system based on clustering analysis. Electr. Power 39(12), 16–19 (2006)

    Google Scholar 

  20. Gu, J., Lu, L., Cai, R., Zhang, H.-J., Yang, J.: Dominant feature vectors based audio similarity measure. In: Aizawa, K., Nakamura, Y., Satoh, S. (eds.) PCM 2004. LNCS, vol. 3332, pp. 890–897. Springer, Heidelberg (2004). doi:10.1007/978-3-540-30542-2_110

    Chapter  Google Scholar 

Download references

Acknowledgments

This work is supported by the National Natural Science Foundation of China (61472346, 61662086), the Natural Science Foundation of Yunnan Province (2015FB114, 2016FA026), the Project of Innovation Team of Yunnan University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lizhen Wang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Fang, Y., Wang, L., Wang, X., Zhou, L. (2017). Mining Co-location Patterns with Dominant Features. In: Bouguettaya, A., et al. Web Information Systems Engineering – WISE 2017. WISE 2017. Lecture Notes in Computer Science(), vol 10569. Springer, Cham. https://doi.org/10.1007/978-3-319-68783-4_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-68783-4_13

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-68782-7

  • Online ISBN: 978-3-319-68783-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics