Abstract
With the advances and availability of networking and data processing technologies, the number of researches supporting taxi as a mean of transportation and further optimization of their route selection is increasing and broadly discussed. For the taxis, when they are cruising on the street the drivers looking for passengers, most drivers rely on their experience and intuition for the guideline to optimize their cruise routes and increase profit. This approach, however, is not efficient and usually increases the traffic load in urban cities. A solution is highly required to match and recommend appropriate cruising routes to taxis so that aimless cruising would be avoided and the drivers income would be increased. In this paper, we propose a route recommendation algorithm based on the Urban Traffic Coulomb’s Law to model the relationship between the taxis and passengers in urban traffic scenarios. Different from existing route recommendation methods, the relationship among taxis and passengers are fully taken into account in the proposed algorithm, e.g. the attractiveness between taxis and passengers and the repulsion among taxis. It collects useful information from historical trajectories, and calculates the traffic attraction for cruising taxis, based on which optimal road segments are recommended to drivers to pick up desired passengers. Extensive experiments are conducted on the road network based on massive real-world trajectories to verify the effectiveness, and evaluations demonstrate that the proposed method outperforms among existing methods and can increase the drivers’ income by more than 8%.
This work is supported by the Natural Science Foundation of China (61672441), the National Key Technology Support Program (2015BAH16F01).
Similar content being viewed by others
Notes
- 1.
T is the amount of real-time trajectories, R is the number of regions.
- 2.
M is the number of regions in the sub-region.
References
Openstreetmap. http://www.openstreetmap.org/. Accessed 30 Oct 2016
Brakatsoulas, S., Pfoser, D., Salas, R., Wenk, C.: On map-matching vehicle tracking data. In: International Conference on Very Large Data Bases, Trondheim, Norway, 30 August - September, pp. 853–864 (2005)
Chow, C.Y., Mokbel, M.F.: Trajectory privacy in location-based services and data publication. ACM SIGKDD Explor. Newslett. 13(1), 19–29 (2011)
Dong, H., Zhang, X., Dong, Y., Chen, C.: Recommend a profitable cruising route for taxi drivers. In: IEEE International Conference on Intelligent Transportation Systems, pp. 2003–2008 (2014)
Hetherington, D.: Coulomb’s law. Phys. Educ. 32(4), 277 (1997). http://stacks.iop.org/0031-9120/32/i=4/a=025
Hsueh, Y.L., Hwang, R.H., Chen, Y.T.: An effective taxi recommender system based on a spatiotemporal factor analysis model. In: International Conference on Computing, Networking and Communications, pp. 28–40 (2014)
Li, B., Zhang, D., Sun, L., Chen, C., Li, S., Qi, G., Yang, Q.: Hunting or waiting? Discovering passenger-finding strategies from a large-scale real-world taxi dataset. In: IEEE International Conference on Pervasive Computing and Communications Workshops, pp. 63–68 (2011)
Li, X., Pan, G., Wu, Z., Qi, G., Li, S., Zhang, D., Zhang, W., Wang, Z.: Prediction of urban human mobility using large-scale taxi traces and its applications. Front. Comput. Sci. China 6(1), 111–121 (2012)
Niu, B., Li, Q., Zhu, X., Cao, G., Li, H.: Achieving k-anonymity in privacy-aware location-based services. In: Proceedings - IEEE INFOCOM, pp. 754–762 (2014)
Patricksson, M.: The Traffic Assignment Problem: Models and Methods (3), pp. 271–272 (1994)
Powell, J.W., Huang, Y., Bastani, F., Ji, M.: Towards reducing taxicab cruising time using spatio-temporal profitability maps. In: Pfoser, D., Tao, Y., Mouratidis, K., Nascimento, M.A., Mokbel, M., Shekhar, S., Huang, Y. (eds.) SSTD 2011. LNCS, vol. 6849, pp. 242–260. Springer, Heidelberg (2011). doi:10.1007/978-3-642-22922-0_15
Qian, S., Zhu, Y., Li, M.: Smart recommendation by mining large-scale GPS traces, pp. 3267–3272 (2012)
Quddus, M.A.: High Integrity Map Matching Algorithms for Advanced Transport Telematics Applications. Imperial College London, London (2007)
Quddus, M.A., Ochieng, W.Y., Noland, R.B.: Current map-matching algorithms for transport applications: state-of-the art and future research directions. Transp. Res. Part C Emerg. Technol. 15(5), 312–328 (2007)
Shao, J., Lu, R., Lin, X.: Fine: A fine-grained privacy-preserving location-based service framework for mobile devices. In: 2014 Proceedings IEEE INFOCOM (2014)
Takayama, T., Matsumoto, K., Kumagai, A., Sato, N., Murata, Y.: Waiting/cruising location recommendation based on mining on occupied taxi data. In: WSEAS International Conference on Mathematical and Computational Methods in Science and Engineering, pp. 225–229 (2010)
Yuan, J., Zheng, Y., Xie, X., Sun, G.: Driving with knowledge from the physical world. In: Proceedings of the 17th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 316–324. ACM (2011)
Yuan, J., Zheng, Y., Zhang, L., Xie, X., Sun, G.: Where to find my next passenger. In: International Conference on Ubiquitous Computing, pp. 109–118 (2011)
Yuan, N.J., Zheng, Y., Zhang, L., Xie, X.: T-finder: a recommender system for finding passengers and vacant taxis. IEEE Trans. Knowl. Data Eng. 25(10), 2390–2403 (2013)
Zhang, D., He, T.: pCruise: reducing cruising miles for taxicab networks. In: 2012 IEEE 33rd Real-Time Systems Symposium (RTSS), pp. 85–94, December 2012
Zhang, M., Liu, J., Liu, Y., Hu, Z., Yi, L.: Recommending pick-up points for taxi-drivers based on spatio-temporal clustering. In: International Conference on Cloud & Green Computing, pp. 67–72 (2012)
Zheng, Y., Zhang, L., Xie, X., Ma, W.Y.: Mining interesting locations and travel sequences from GPS trajectories. In: International Conference on World Wide Web, WWW 2009, Madrid, Spain, April, pp. 791–800 (2009)
Author information
Authors and Affiliations
Corresponding authors
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2017 Springer International Publishing AG
About this paper
Cite this paper
Lyu, Z., Lai, Y., Li, KC., Yang, F., Liao, M., Gao, X. (2017). Taxi Route Recommendation Based on Urban Traffic Coulomb’s Law. In: Bouguettaya, A., et al. Web Information Systems Engineering – WISE 2017. WISE 2017. Lecture Notes in Computer Science(), vol 10569. Springer, Cham. https://doi.org/10.1007/978-3-319-68783-4_26
Download citation
DOI: https://doi.org/10.1007/978-3-319-68783-4_26
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-68782-7
Online ISBN: 978-3-319-68783-4
eBook Packages: Computer ScienceComputer Science (R0)