Skip to main content

High-Accuracy Deep Convolution Neural Network for Image Super-Resolution

  • Conference paper
  • First Online:
Intelligent Data Engineering and Automated Learning – IDEAL 2017 (IDEAL 2017)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 10585))

  • 2151 Accesses

Abstract

Higher performance is the eternal purpose for super-resolution (SR) methods to pursue. Since the deep convolution neural network is introduced into this issue successfully, many SR methods have achieved impressive results. To further improve the accuracy that current SR methods have achieved, we propose a high-accuracy deep convolution network (HDCN). In this article, deeper network structure is deployed for reconstructing images with a fixed upscaling factor and the magnification becomes alternative by cascading HDCN. \(L_2\) loss function is substituted by a more robust one for reducing the blurry prediction. In addition, gradual learning is adopted for accelerating the rate of convergence and compacting the training process. Extensive experiment results prove the effectiveness of these ingenious strategies and demonstrate the higher-accuracy of proposed model among state-of-the-art SR methods.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Bevilacqua, M., Roumy, A., Guillemot, C., Alberi Morel, M.L.: Low-complexity single-image super-resolution based on nonnegative neighbor embedding. In: British Machine Vision Conference (BMVC), pp. 1–12 (2012)

    Google Scholar 

  2. Dong, C., Loy, C.C., He, K., Tang, X.: Learning a deep convolutional network for image super-resolution. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014. LNCS, vol. 8692, pp. 184–199. Springer, Cham (2014). doi:10.1007/978-3-319-10593-2_13

    Google Scholar 

  3. Dong, C., Loy, C.C., Tang, X.: Accelerating the super-resolution convolutional neural network. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9906, pp. 391–407. Springer, Cham (2016). doi:10.1007/978-3-319-46475-6_25

    Chapter  Google Scholar 

  4. Huang, J.B., Singh, A., Ahuja, N.: Single image super-resolution from transformed self-exemplars. In: 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 5197–5206 (2015)

    Google Scholar 

  5. Jia, Y., Shelhamer, E., Donahue, J., Karayev, S., Long, J., Girshick, R.B., Guadarrama, S., Darrell, T.: Caffe: convolutional architecture for fast feature embedding. CoRR abs/1408.5093 (2014)

    Google Scholar 

  6. Kim, J., Lee, J.K., Lee, K.M.: Accurate image super-resolution using very deep convolutional networks. CoRR abs/1511.04587 (2015)

    Google Scholar 

  7. Kim, J., Lee, J.K., Lee, K.M., undefined, undefined, undefined, undefined: deeply-recursive convolutional network for image super-resolution. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 1637–1645 (2016)

    Google Scholar 

  8. Lai, W., Huang, J., Ahuja, N., Yang, M.: Deep laplacian pyramid networks for fast and accurate super-resolution. CoRR abs/1704.03915 (2017)

    Google Scholar 

  9. Martin, D., Fowlkes, C., Malik, J., Tal, D.: A database of human segmented natural images and its application to evaluating segmentation algorithms and measuring ecological statistics. In: IEEE International Conference on Computer Vision, vol. 02, p. 416 (2001)

    Google Scholar 

  10. Schulter, S., Leistner, C., Bischof, H.: Fast and accurate image upscaling with super-resolution forests. In: 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 3791–3799 (2015)

    Google Scholar 

  11. Timofte, R., De Smet, V., Van Gool, L.: A+: adjusted anchored neighborhood regression for fast super-resolution. In: Cremers, D., Reid, I., Saito, H., Yang, M.-H. (eds.) ACCV 2014. LNCS, vol. 9006, pp. 111–126. Springer, Cham (2015). doi:10.1007/978-3-319-16817-3_8

    Google Scholar 

  12. Yang, J., Wright, J., Huang, T.S., Ma, Y.: Image super-resolution via sparse representation. Trans. Img. Proc. 19(11), 2861–2873 (2010)

    Article  MathSciNet  Google Scholar 

  13. Zeyde, R., Elad, M., Protter, M.: On single image scale-up using sparse-representations. In: Boissonnat, J.-D., Chenin, P., Cohen, A., Gout, C., Lyche, T., Mazure, M.-L., Schumaker, L. (eds.) Curves and Surfaces 2010. LNCS, vol. 6920, pp. 711–730. Springer, Heidelberg (2012). doi:10.1007/978-3-642-27413-8_47

    Chapter  Google Scholar 

  14. Zhao, Y., Wang, R., Dong, W., Jia, W., Yang, J., Liu, X., Gao, W.: GUN: gradual upsampling network for single image super-resolution. CoRR abs/1703.04244 (2017)

    Google Scholar 

Download references

Acknowledgment

The paper is supported in part by the Natural Science Foundation of China (No. 61672022 and No. 61272036), the Key Discipline Foundation of Shanghai Second Polytechnic University (No. XXKZD1604), and the Graduate Innovation Program (No. A01GY17F022).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiao Guo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Tan, W., Guo, X. (2017). High-Accuracy Deep Convolution Neural Network for Image Super-Resolution. In: Yin, H., et al. Intelligent Data Engineering and Automated Learning – IDEAL 2017. IDEAL 2017. Lecture Notes in Computer Science(), vol 10585. Springer, Cham. https://doi.org/10.1007/978-3-319-68935-7_23

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-68935-7_23

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-68934-0

  • Online ISBN: 978-3-319-68935-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics