Skip to main content

An Improved Density Peak Clustering Algorithm

  • Conference paper
  • First Online:
Intelligent Data Engineering and Automated Learning – IDEAL 2017 (IDEAL 2017)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 10585))

Abstract

Density based clustering is an important clustering approach due to its ability to generate clusters of arbitrary shapes. Among density based clustering algorithms, the density peak (DP) based algorithm is shown to a potential one with some attractive properties. The DP algorithm calculates the local density of each data, and then the distance of each data to its nearest neighbor with higher density. Based on these two measurements, the cluster centers can be isolated from the non-center data. As a result, the cluster centers can be identified relatively easily and the non-center data can be grouped into clusters efficiently. In this paper we study the influence of density kernels on the clustering results and present a new kernel. We also present a new cluster center selection criterion based on distance normalization. Our new algorithm is shown to be effective in experiments on ten datasets.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bello-Orgza, G., Camacho, D.: Evolutionary clustering algorithm for community detection using graph-based information. In: IEEE Congress on Evolutionary Computation, pp. 930–937 (2014)

    Google Scholar 

  2. Brendan, J.F., Delbert, D.: Clustering by passing messages between data points. Science 315, 972–976 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  3. Chang, H., Yeung, D.Y.: Robust path-based spectral clustering. Pattern Recogn. 41(1), 191–203 (2008)

    Article  MATH  Google Scholar 

  4. Daszykowski, M., Walczak, B., Massart, D.L.: Looking for natural patterns in data: Part 1. density-based approach. Chemometr. Intell. Lab. Syst. 56(2), 83–92 (2001)

    Article  Google Scholar 

  5. Ester, M., Kriegel, H.P., Sander, J., Xu, X.W.: A density-based algorithm for discovering clusters in large spatial databases with noise. In: International Conference on Knowledge Discovery and Data Mining, pp. 226–231 (1996)

    Google Scholar 

  6. Gionis, A., Mannila, H., Tsaparas, P.: Clustering aggregation. ACM Trans. Knowl. Discov. Data 1(1), 1–30 (2007)

    Article  Google Scholar 

  7. González-Pardo, A., Granados, A., Camacho, D., de Borja Rodríguez, F.: Influence of music representation on compression-based clustering. In: IEEE Congress on Evolutionary Computation, pp. 1–8 (2010)

    Google Scholar 

  8. González-Pardo, A., Jung, J.J., Camacho, D.: Aco-based clustering for ego network analysis. Future Generat. Comput. Syst. 66, 160–170 (2017)

    Article  Google Scholar 

  9. González-Pardo, A., Ortíz, F.B.R., Pulido, E., Fernández, D.C.: Influence of music representation on compression-based clustering. In: ACM Workshop on Surreal Media and Virtual Cloning, pp. 9–14 (2010)

    Google Scholar 

  10. Hou, J., Gao, H., Li, X.: DSets-DBSCAN: a parameter-free clustering algorithm. IEEE Trans. Image Process. 25(7), 3182–3193 (2016)

    Article  MathSciNet  Google Scholar 

  11. Hou, J., Gao, H., Xia, Q., Qi, N.: Feature combination and the kNN framework in object classification. IEEE Trans. Neural Netw. Learn. Syst. 27(6), 1368–1378 (2016)

    Article  Google Scholar 

  12. Hou, J., Liu, W., Xu, E., Cui, H.: Towards parameter-independent data clustering and image segmentation. Pattern Recogn. 60, 25–36 (2016)

    Article  Google Scholar 

  13. Hou, J., Pelillo, M.: A simple feature combination method based on dominant sets. Pattern Recogn. 46(11), 3129–3139 (2013)

    Article  Google Scholar 

  14. Hou, J., Qi, X., Qi, N.M.: Experimental study on dominant sets clustering. IET Comput. Vision 9(2), 208–215 (2015)

    Article  Google Scholar 

  15. Hou, J., Pelillo, M.: A new density kernel in density peak based clustering. In: International Conference on Pattern Recognition, pp. 463–468 (2016)

    Google Scholar 

  16. Jain, A.K., Law, M.H.C.: Data clustering: a user’s dilemma. In: Pal, S.K., Bandyopadhyay, S., Biswas, S. (eds.) PReMI 2005. LNCS, vol. 3776, pp. 1–10. Springer, Heidelberg (2005). doi:10.1007/11590316_1

    Chapter  Google Scholar 

  17. Menéndez, H.D., Barrero, D.F., Camacho, D.: Adaptive k-means algorithm for overlapped graph clustering. Int. J. Neural Syst. 22(5), 1250018 (2012)

    Article  Google Scholar 

  18. Menéndez, H.D., Barrero, D.F., Camacho, D.: A multi-objective genetic graph-based clustering algorithm with memory optimization. In: IEEE Congress on Evolutionary Computation, pp. 3174–3181 (2013)

    Google Scholar 

  19. Menéndez, H.D., Barrero, D.F., Camacho, D.: A co-evolutionary multi-objective approach for a k-adaptive graph-based clustering algorithm. In: IEEE Congress on Evolutionary Computation, pp. 2724–2731 (2014)

    Google Scholar 

  20. Menéndez, H.D., Barrero, D.F., Camacho, D.: A genetic graph-based approach for partitional clustering. Int. J. Neural Syst. 24(3), 1430008 (2014)

    Article  Google Scholar 

  21. Menéndez, H., Camacho, D.: A genetic graph-based clustering algorithm. In: Yin, H., Costa, J.A.F., Barreto, G. (eds.) IDEAL 2012. LNCS, vol. 7435, pp. 216–225. Springer, Heidelberg (2012). doi:10.1007/978-3-642-32639-4_27

    Chapter  Google Scholar 

  22. Menéndez, H.D., Otero, F.E.B., Camacho, D.: MACOC: a medoid-based ACO clustering algorithm. In: Dorigo, M., Birattari, M., Garnier, S., Hamann, H., Montes de Oca, M., Solnon, C., Stützle, T. (eds.) ANTS 2014. LNCS, vol. 8667, pp. 122–133. Springer, Cham (2014). doi:10.1007/978-3-319-09952-1_11

    Google Scholar 

  23. Menéndez, H.D., Plaza, L., Camacho, D.: Combining graph connectivity and genetic clustering to improve biomedical summarization. In: IEEE Congress on Evolutionary Computation, pp. 2740–2747 (2014)

    Google Scholar 

  24. Zemene, E., Pelillo, M.: Interactive image segmentation using constrained dominant sets. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9912, pp. 278–294. Springer, Cham (2016). doi:10.1007/978-3-319-46484-8_17

    Chapter  Google Scholar 

  25. Pavan, M., Pelillo, M.: Dominant sets and pairwise clustering. IEEE Trans. Pattern Anal. Mach. Intell. 29(1), 167–172 (2007)

    Article  Google Scholar 

  26. Rodriguez, A., Laio, A.: Clustering by fast search and find of density peaks. Science 344, 1492–1496 (2014)

    Article  Google Scholar 

  27. Shi, J., Malik, J.: Normalized cuts and image segmentation. IEEE Trans. Pattern Anal. Mach. Intell. 22(8), 167–172 (2000)

    Google Scholar 

  28. Tripodi, R., Pelillo, M.: A game-theoretic approach to word sense disambiguation. Comput. Linguist. 43(1), 31–70 (2017)

    Article  MathSciNet  Google Scholar 

  29. Vascon, S., Mequanint, E.Z., Cristani, M., Hung, H., Pelillo, M., Murino, V.: Detecting conversational groups in images and sequences: a robust game-theoretic approach. Comput. Vis. Image Underst. 143, 11–24 (2016)

    Article  Google Scholar 

  30. Veenman, C.J., Reinders, M., Backer, E.: A maximum variance cluster algorithm. IEEE Trans. Pattern Anal. Mach. Intell. 24(9), 1273–1280 (2002)

    Article  Google Scholar 

  31. Zahn, C.T.: Graph-theoretical methods for detecting and describing gestalt clusters. IEEE Trans. Comput. 20(1), 68–86 (1971)

    Article  MATH  Google Scholar 

  32. Zhu, X., Loy, C.C., Gong, S.: Constructing robust affinity graphs for spectral clustering. In: IEEE International Conference on Computer Vision and Pattern Recognition, pp. 1450–1457 (2014)

    Google Scholar 

Download references

Acknowledgement

This work is supported in part by the National Natural Science Foundation of China under Grant No. 61473045, and by the Natural Science Foundation of Liaoning Province under Grant Nos. 20170540013 and 20170540005.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jian Hou .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Hou, J., E, X. (2017). An Improved Density Peak Clustering Algorithm. In: Yin, H., et al. Intelligent Data Engineering and Automated Learning – IDEAL 2017. IDEAL 2017. Lecture Notes in Computer Science(), vol 10585. Springer, Cham. https://doi.org/10.1007/978-3-319-68935-7_24

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-68935-7_24

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-68934-0

  • Online ISBN: 978-3-319-68935-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics