Skip to main content

Predicting Learning Effect by Learner’s Behavior in MOOCs

  • Conference paper
  • First Online:
  • 2055 Accesses

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 10585))

Abstract

With the fast development of MOOCs in recent years, more and more people start to take MOOCs to perfect themselves. However, there exist high dropout rate and low passing rate of examination in many courses. So it is very important to predict learners’ learning effect exactly. For learners who predicted good learning effect, teachers can impose intervention to help these learners to stick to the end of courses, while for predicted bad learning effect, teachers can take measures to help these learners to study harder to improve their learning. In this paper, we first analyze learners’ learning behavior data to explore the differences among learners with different categories, then a cascade prediction model is proposed to predict whether a learner can earn certificate in a course. Experiments conducted on a real-world dataset illustrated the effectiveness of the proposed model.

This work was supported in part by the National Natural Science Foundation of China 61363029, Online Education Research Fund (QTone Education) of Ministry of Education of China 2016YB155, and the Natural Science Foundation of Guangxi District 2014GXNSFAA118395.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Seaton, D.T., Bergner, Y., Chuang, I., Mitros, P., Pritchard, D.E.: Who does what in a massive open online course? Commun. ACM 57(4), 58–65 (2014)

    Article  Google Scholar 

  2. Tang, Jeff K.T., Xie, H., Wong, T.-L.: A big data framework for early identification of dropout students in MOOC. In: Lam, J., Ng, K.K., Cheung, Simon K.S., Wong, T.L., Li, K.C., Wang, F.L. (eds.) ICTE 2015. CCIS, vol. 559, pp. 127–132. Springer, Heidelberg (2015). doi:10.1007/978-3-662-48978-9_12

    Chapter  Google Scholar 

  3. Massive open online course. https://en.wikipedia.org/wiki/Massive_open_online_course

  4. Ho, A.D., Reich, J., Nesterko, S.O., Seaton, D.T., Mullaney, T., Waldo, J., Chuang, I.: HarvardX and MITx: The First Year of Open Online Courses, Fall 2012-Summer 2013. MIT Office of Digital Learning, HarvardX Research Committee, pp. 1–33 (2014)

    Google Scholar 

  5. Kloft, M., Stiehler, F., Zheng, Z., Pinkwart, N.: Predicting MOOC dropout over weeks using machine learning methods. In: Proceedings of EMNLP 2014 Workshop on Analysis of Large Scale Social Interaction in MOOCs, pp. 60–65. ACL, Stroudsburg (2014)

    Google Scholar 

  6. Fei, M., Yeung, D.Y.: Temporal models for predicting student dropout in massive open online courses. In: Proceedings of 2015 IEEE International Conference on Data Mining Workshop (ICDMW), pp. 256–263. IEEE, Washington (2015)

    Google Scholar 

  7. Jiang, Z.X., Zhang, Y., Li, X.M.: Learning behavior analysis and prediction based on MOOC data. J. Comput. Res. Dev. 52(3), 614–628 (2015)

    Google Scholar 

  8. Qiu, J., Tang, J., Liu, T.X., Gong, J., Zhang, C.H., Zhang, Q., Xue, Y.F.: Modeling and predicting learning behavior in MOOCs. In: Proceedings of International Conference on Web Search and Data Mining, pp. 93–102. ACM, New York (2016)

    Google Scholar 

  9. Elbadrawy, A., Polyzou, A., Ren, Z.: Predicting student performance using personalized analytics. Computer 49(4), 61–69 (2016)

    Article  Google Scholar 

  10. Sinha, T., Cassell, J.: Connecting the dots: predicting student grade sequences from Bursty MOOC interactions over time. In: Proceedings of the Second ACM Conference on Learning at Scale, pp. 249–252. ACM, New York (2015)

    Google Scholar 

  11. Ramesh, A., Goldwasser, D., Huang, B., Daum, H., Getoor, L.: Modeling learner engagement in MOOCs using probabilistic soft logic. In: Proceedings of NIPS Workshop on Data Driven Education, pp. 1–7. MIT Press, Massachusetts (2013)

    Google Scholar 

  12. Shankar, S., Sarkar, B.D., Sabitha, S.: Performance analysis of student learning metric using K-mean clustering approach K-mean cluster. In: Proceedings of the 6th International Conference on Cloud System and Big Data Engineering, pp. 341–345. IEEE, New York (2016)

    Google Scholar 

  13. Harvardx-mitx person-course academic year 2013 de-identified dataset, version 2.0. http://dx.doi.org/10.7910/DVN/26147

  14. Prati, R.C., Batista, G.E.A.P.A., Monard, M.C.: Class imbalances versus class overlapping: an analysis of a learning system behavior. In: Monroy, R., Arroyo-Figueroa, G., Sucar, L.E., Sossa, H. (eds.) MICAI 2004. LNCS, vol. 2972, pp. 312–321. Springer, Heidelberg (2004). doi:10.1007/978-3-540-24694-7_32

    Chapter  Google Scholar 

  15. Akbani, R., Kwek, S., Japkowicz, N.: Applying support vector machines to imbalanced datasets. In: Boulicaut, J.-F., Esposito, F., Giannotti, F., Pedreschi, D. (eds.) ECML 2004. LNCS, vol. 3201, pp. 39–50. Springer, Heidelberg (2004). doi:10.1007/978-3-540-30115-8_7

    Chapter  Google Scholar 

  16. Chang, C.C., Lin, C.J.: LIBSVM: a library for support vector machines. ACM Trans. Intell. Syst. Technol. 2(3), 1–27 (2012)

    Article  Google Scholar 

  17. Chawla, N.V., Bowyer, K.W., Hall, L.O., Kegelmeyer, W.P.: SMOTE: synthetic minority over-sampling technique. J. Artif. Intell. Res. 16(1), 321–357 (2011)

    MATH  Google Scholar 

  18. Kubat, M., Matwin, S.: Addressing the curse of imbalanced training sets: one-sided selection. In: Proceedings of the 14th International Conference on Machine Learning, pp. 179–186. ACM, New York (1997)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yimin Wen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Tian, Y., Wen, Y., Yi, X., Yang, X., Miao, Y. (2017). Predicting Learning Effect by Learner’s Behavior in MOOCs. In: Yin, H., et al. Intelligent Data Engineering and Automated Learning – IDEAL 2017. IDEAL 2017. Lecture Notes in Computer Science(), vol 10585. Springer, Cham. https://doi.org/10.1007/978-3-319-68935-7_57

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-68935-7_57

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-68934-0

  • Online ISBN: 978-3-319-68935-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics