Skip to main content

Proof-Labeling Schemes: Broadcast, Unicast and in Between

  • Conference paper
  • First Online:
Stabilization, Safety, and Security of Distributed Systems (SSS 2017)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 10616))

Abstract

We study the effect of limiting the number of different messages a node can transmit simultaneously on the verification complexity of proof-labeling schemes (PLS). In a PLS, each node is given a label, and the goal is to verify, by exchanging messages over each link in each direction, that a certain global predicate is satisfied by the system configuration. We consider a single parameter r that bounds the number of distinct messages that can be sent concurrently by any node: in the case \(r=1\), each node may only send the same message to all its neighbors (the broadcast model), in the case \(r\ge \varDelta \), where \(\varDelta \) is the largest node degree in the system, each neighbor may be sent a distinct message (the unicast model), and in general, for \(1\le r\le \varDelta \), each of the r messages is destined to a subset of the neighbors.

We show that message compression linear in r is possible for verifying fundamental problems such as the agreement between edge endpoints on the edge state. Some problems, including verification of maximal matching, exhibit a large gap in complexity between \(r=1\) and \(r>1\). For some other important predicates, the verification complexity is insensitive to r, e.g., the question whether a subset of edges constitutes a spanning-tree. We also consider the congested clique model. We show that the crossing technique [5] for proving lower bounds on the verification complexity can be applied in the case of congested clique only if \(r=1\). Together with a new upper bound, this allows us to determine the verification complexity of MST in the broadcast clique.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    Given a graph \(G=(V,E)\), the induced subgraph \(H=(V_H,E_H)\) over the set of nodes \(V_H\subseteq V\) satisfies that \(E_H=E\cap (V_H\times V_H)\).

  2. 2.

    We note that using simple port numbering requires agreement with the neighbors, which is costly, as we prove in Theorem 2.

References

  1. Ahuja, R.K., Magnanti, T.L., Orlin, J.B.: Network Flows. Prentice-Hall, Engelwood Cliffs (1993)

    MATH  Google Scholar 

  2. Arfaoui, H., Fraigniaud, P., Ilcinkas, D., Mathieu, F.: Distributedly testing cycle-freeness. In: Kratsch, D., Todinca, I. (eds.) WG 2014. LNCS, vol. 8747, pp. 15–28. Springer, Cham (2014). doi:10.1007/978-3-319-12340-0_2

    Chapter  Google Scholar 

  3. Arfaoui, H., Fraigniaud, P., Pelc, A.: Local decision and verification with bounded-size outputs. In: Higashino, T., Katayama, Y., Masuzawa, T., Potop-Butucaru, M., Yamashita, M. (eds.) SSS 2013. LNCS, vol. 8255, pp. 133–147. Springer, Cham (2013). doi:10.1007/978-3-319-03089-0_10

    Chapter  Google Scholar 

  4. Awerbuch, B., Patt-Shamir, B., Varghese, G.: Self-stabilization by local checking and correction. In: 32nd Symposium on Foundations of Computer Science (FOCS), pp. 268–277. IEEE (1991)

    Google Scholar 

  5. Baruch, M., Fraigniaud, P., Patt-Shamir, B.: Randomized proof-labeling schemes. In: Proceedings of 34th ACM Symposium on Principles of Distributed Computing (PODC), pp. 315–324 (2015)

    Google Scholar 

  6. Becker, F., Anta, A.F., Rapaport, I., Rémila, E.: The effect of range and bandwidth on the round complexity in the congested clique model. In: Dinh, T.N., Thai, M.T. (eds.) COCOON 2016. LNCS, vol. 9797, pp. 182–193. Springer, Cham (2016). doi:10.1007/978-3-319-42634-1_15

    Chapter  MATH  Google Scholar 

  7. Blin, L., Fraigniaud, P., Patt-Shamir, B.: On proof-labeling schemes versus silent self-stabilizing algorithms. In: Felber, P., Garg, V. (eds.) SSS 2014. LNCS, vol. 8756, pp. 18–32. Springer, Cham (2014). doi:10.1007/978-3-319-11764-5_2

    Chapter  Google Scholar 

  8. Das Sarma, A., Holzer, S., Kor, L., Korman, A., Nanongkai, D., Pandurangan, G., Peleg, D., Wattenhofer, R.: Distributed verification and hardness of distributed approximation. SIAM J. Comput. 41(5), 1235–1265 (2012)

    Article  MathSciNet  Google Scholar 

  9. Drucker, A., Kuhn, F., Oshman, R.: On the power of the congested clique model. In: Proceedings of 2014 ACM Symposium on Principles of Distributed Computing, PODC 2014, pp. 367–376. ACM, New York (2014)

    Google Scholar 

  10. Feuilloley, L., Fraigniaud, P., Hirvonen, J.: A hierarchy of local decision. In: 43rd International Colloquium on Automata, Languages, and Programming (ICALP 2016), pp. 118:1–118:15. Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik (2016)

    Google Scholar 

  11. Foerster, K.-T., Luedi, T., Seidel, J., Wattenhofer, R.: Local checkability, no strings attached. In: Proceedings of 17th International Conference on Distributed Computing and Networking, ICDCN 2016, pp. 21:1–21:10. ACM, New York (2016)

    Google Scholar 

  12. Foerster, K.-T., Richter, O., Seidel, J., Wattenhofer, R.: Local checkability in dynamic networks. In: Proceedings of 18th International Conference on Distributed Computing and Networking, ICDCN 2017, pp. 4:1–4:10. ACM, New York (2017)

    Google Scholar 

  13. Fraigniaud, P., Göös, M., Korman, A., Suomela, J.: What can be decided locally without identifiers? In: Proceedings of 2013 ACM Symposium on Principles of Distributed Computing, PODC 2013, pp. 157–165. ACM, New York (2013)

    Google Scholar 

  14. Fraigniaud, P., Halldórsson, M.M., Korman, A.: On the impact of identifiers on local decision. In: Baldoni, R., Flocchini, P., Binoy, R. (eds.) OPODIS 2012. LNCS, vol. 7702, pp. 224–238. Springer, Heidelberg (2012). doi:10.1007/978-3-642-35476-2_16

    Chapter  MATH  Google Scholar 

  15. Fraigniaud, P., Hirvonen, J., Suomela, J.: Node labels in local decision. In: Scheideler, C. (ed.) Structural Information and Communication Complexity. LNCS, vol. 9439, pp. 31–45. Springer, Cham (2015). doi:10.1007/978-3-319-25258-2_3

    Chapter  Google Scholar 

  16. Fraigniaud, P., Korman, A., Peleg, D.: Towards a complexity theory for local distributed computing. J. ACM 60(5), 35 (2013)

    Article  MathSciNet  Google Scholar 

  17. Fraigniaud, P., Rajsbaum, S., Travers, C.: Locality and checkability in wait-free computing. Distrib. Comput. 26(4), 223–242 (2013)

    Article  Google Scholar 

  18. Fraigniaud, P., Rajsbaum, S., Travers, C.: On the number of opinions needed for fault-tolerant run-time monitoring in distributed systems. In: Bonakdarpour, B., Smolka, S.A. (eds.) RV 2014. LNCS, vol. 8734, pp. 92–107. Springer, Cham (2014). doi:10.1007/978-3-319-11164-3_9

    Chapter  Google Scholar 

  19. Göös, M., Suomela, J.: Locally checkable proofs. In: 30th ACM Symposium on Principles of Distributed Computing (PODC), pp. 159–168 (2011)

    Google Scholar 

  20. Korman, A., Kutten, S.: Distributed verification of minimum spanning trees. Distrib. Comput. 20, 253–266 (2007)

    Article  Google Scholar 

  21. Korman, A., Kutten, S., Masuzawa, T.: Fast and compact self stabilizing verification, computation, and fault detection of an MST. In: 30th Annual ACM Symposium on Principles of Distributed Computing (PODC), pp. 311–320 (2011)

    Google Scholar 

  22. Korman, A., Kutten, S., Peleg, D.: Proof labeling schemes. Distrib. Comput. 22(4), 215–233 (2010)

    Article  Google Scholar 

  23. Kushilevitz, E., Nisan, N.: Communication Complexity. Cambridge University Press, Cambridge (1997)

    Book  Google Scholar 

  24. Nash-Williams, C.S.A.: Edge-disjoint spanning trees of finite graphs. J. Lond. Math. Soc. s1–36(1), 445–450 (1961)

    Article  MathSciNet  Google Scholar 

  25. Nash-Williams, C.S.A.: Decomposition of finite graphs into forests. J. Lond. Math. Soc. s1–39(1), 12 (1964)

    Article  MathSciNet  Google Scholar 

  26. Patt-Shamir, B., Perry, M.: Proof-labeling schemes: broadcast, unicast and in between. CoRR, abs/1708.06947 (2017)

    Google Scholar 

  27. Peleg, D.: Distributed Computing: A Locality-Sensitive Approach. Society for Industrial and Applied Mathematics, Philadelphia (2000)

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mor Perry .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Patt-Shamir, B., Perry, M. (2017). Proof-Labeling Schemes: Broadcast, Unicast and in Between. In: Spirakis, P., Tsigas, P. (eds) Stabilization, Safety, and Security of Distributed Systems. SSS 2017. Lecture Notes in Computer Science(), vol 10616. Springer, Cham. https://doi.org/10.1007/978-3-319-69084-1_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-69084-1_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-69083-4

  • Online ISBN: 978-3-319-69084-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics