Abstract
We study here the dynamics and stability of Probabilistic Population Processes, via the differential equations approach. We provide a quite general model following the work of Kurtz [15] for approximating discrete processes with continuous differential equations. We show that it includes the model of Angluin et al. [1], in the case of very large populations. We require that the long-term behavior of the family of increasingly large discrete processes is a good approximation to the long-term behavior of the continuous process, i.e., we exclude population protocols that are extremely unstable such as parity-dependent decision processes. For the general model, we give a sufficient condition for stability that can be checked in polynomial time. We also study two interesting sub cases: (a) Protocols whose specifications (in our terms) are configuration independent. We show that they are always stable and that their eventual subpopulation percentages are actually a Markov Chain stationary distribution. (b) Protocols that have dynamics resembling virus spread. We show that their dynamics are actually similar to the well-known Replicator Dynamics of Evolutionary Games. We also provide a sufficient condition for stability in this case.
A previous version of some aspects of this work has appeared as a brief announcement in DISC 2008 [6].
Similar content being viewed by others
References
Angluin, D., Aspnes, J., Diamadi, Z., Fischer, M.J., Peralta, R.: Computation in networks of passively mobile finite-state sensors. In: 23rd Annual ACM Symposium on Principles of Distributed Computing (PODC), New York, NY, USA, pp. 290–299 (2004)
Angluin, D., Aspnes, J., Eisenstat, D.: Fast computation by population protocols with a leader. In: Dolev, S. (ed.) DISC 2006. LNCS, vol. 4167, pp. 61–75. Springer, Heidelberg (2006). doi:10.1007/11864219_5
Belleville, A., Doty, D., Soloveichik, D.: Hardness of computing and approximating predicates and functions with leaderless population protocols. In: 44th International Colloquium on Automata, Languages, and Programming (ICALP 2017), Leibniz International Proceedings in Informatics (LIPIcs), vol. 80, pp. 141:1–141:14, Dagstuhl, Germany (2017). Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik
Chatzigiannakis, I., Michail, O., Nikolaou, S., Pavlogiannis, A., Spirakis, P.G.: Passively mobile communicating machines that use restricted space. Theor. Comput. Sci. 412(46), 6469–6483 (2011)
Chatzigiannakis, I., Mylonas, G., Vitaletti, A.: Urban pervasive applications: challenges, scenarios and case studies. Comput. Sci. Rev. 5(1), 103–118 (2011)
Chatzigiannakis, I., Spirakis, P.G.: The dynamics of probabilistic population protocols. In: Taubenfeld, G. (ed.) DISC 2008. LNCS, vol. 5218, pp. 498–499. Springer, Heidelberg (2008). doi:10.1007/978-3-540-87779-0_35
Czyzowicz, J., Ga̧sieniec, L., Kosowski, A., Kranakis, E., Spirakis, P.G., Uznański, P.: On convergence and threshold properties of discrete Lotka-Volterra population protocols. In: Halldórsson, M.M., Iwama, K., Kobayashi, N., Speckmann, B. (eds.) ICALP 2015. LNCS, vol. 9134, pp. 393–405. Springer, Heidelberg (2015). doi:10.1007/978-3-662-47672-7_32
Diamadi, Z., Fischer, M.J.: A simple game for the study of trust in distributed systems. Wuhan Univ. J. Nat. Sci. 6(1–2), 72–82 (2001)
Galstyan, A., Lerman, K.: Analysis of a stochastic model of adaptive task allocation in robots. In: Brueckner, S.A., Di Marzo Serugendo, G., Karageorgos, A., Nagpal, R. (eds.) ESOA 2004. LNCS, vol. 3464, pp. 167–179. Springer, Heidelberg (2005). doi:10.1007/11494676_11
Guerraoui, R., Ruppert, E.: Names trump malice: tiny mobile agents can tolerate Byzantine failures. In: Albers, S., Marchetti-Spaccamela, A., Matias, Y., Nikoletseas, S., Thomas, W. (eds.) ICALP 2009. LNCS, vol. 5556, pp. 484–495. Springer, Heidelberg (2009). doi:10.1007/978-3-642-02930-1_40
Hartman, P.: A lemma in the theory of structural stability of differential equations. Am. Math. Soc. 11(4), 610–620 (1960)
Hirsch, M., Smale, S.: Differential Equations, Dynamical Systems and Linear Algebra. Academic Press, London (1974)
Hofbauer, J., Sigmund, K.: Evolutionary Games and Population Dynamics. Cambridge University Press, Cambridge (1998)
Kleinrock, L.: Queueing Systems, Theory, vol. I. Wiley, Hoboken (1975)
Kurtz, T.G.: Approximation of Population Processes (1981)
Michail, O., Chatzigiannakis, I., Spirakis, P.G.: Mediated population protocols. Theor. Comput. Sci. 412(22), 2434–2450 (2011)
Mitzenmacher, M.: Analyses of load stealing models based on families of differential equations. Theory Comput. Syst. 34(1), 77–98 (2001)
Mitzenmacher, M., Upfal, E.: Probability and Computing: Randomized Algorithms and Probabilistic Analysis. Cambridge University Press, Cambridge (2005)
Weibull, J.W.: Evolutionary Game Theory. MIT Press, Cambridge (1997)
Wormald, N.C.: Differential equations for random processes and random graphs. Ann. Appl. Probab. 5, 1217–1235 (1995)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2017 Springer International Publishing AG
About this paper
Cite this paper
Chatzigiannakis, I., Spirakis, P. (2017). The Dynamics and Stability of Probabilistic Population Processes. In: Spirakis, P., Tsigas, P. (eds) Stabilization, Safety, and Security of Distributed Systems. SSS 2017. Lecture Notes in Computer Science(), vol 10616. Springer, Cham. https://doi.org/10.1007/978-3-319-69084-1_3
Download citation
DOI: https://doi.org/10.1007/978-3-319-69084-1_3
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-69083-4
Online ISBN: 978-3-319-69084-1
eBook Packages: Computer ScienceComputer Science (R0)