Skip to main content

The Dynamics and Stability of Probabilistic Population Processes

  • Conference paper
  • First Online:
Stabilization, Safety, and Security of Distributed Systems (SSS 2017)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 10616))

  • 1214 Accesses

Abstract

We study here the dynamics and stability of Probabilistic Population Processes, via the differential equations approach. We provide a quite general model following the work of Kurtz [15] for approximating discrete processes with continuous differential equations. We show that it includes the model of Angluin et al. [1], in the case of very large populations. We require that the long-term behavior of the family of increasingly large discrete processes is a good approximation to the long-term behavior of the continuous process, i.e., we exclude population protocols that are extremely unstable such as parity-dependent decision processes. For the general model, we give a sufficient condition for stability that can be checked in polynomial time. We also study two interesting sub cases: (a) Protocols whose specifications (in our terms) are configuration independent. We show that they are always stable and that their eventual subpopulation percentages are actually a Markov Chain stationary distribution. (b) Protocols that have dynamics resembling virus spread. We show that their dynamics are actually similar to the well-known Replicator Dynamics of Evolutionary Games. We also provide a sufficient condition for stability in this case.

A previous version of some aspects of this work has appeared as a brief announcement in DISC 2008 [6].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Similar content being viewed by others

References

  1. Angluin, D., Aspnes, J., Diamadi, Z., Fischer, M.J., Peralta, R.: Computation in networks of passively mobile finite-state sensors. In: 23rd Annual ACM Symposium on Principles of Distributed Computing (PODC), New York, NY, USA, pp. 290–299 (2004)

    Google Scholar 

  2. Angluin, D., Aspnes, J., Eisenstat, D.: Fast computation by population protocols with a leader. In: Dolev, S. (ed.) DISC 2006. LNCS, vol. 4167, pp. 61–75. Springer, Heidelberg (2006). doi:10.1007/11864219_5

    Chapter  Google Scholar 

  3. Belleville, A., Doty, D., Soloveichik, D.: Hardness of computing and approximating predicates and functions with leaderless population protocols. In: 44th International Colloquium on Automata, Languages, and Programming (ICALP 2017), Leibniz International Proceedings in Informatics (LIPIcs), vol. 80, pp. 141:1–141:14, Dagstuhl, Germany (2017). Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik

    Google Scholar 

  4. Chatzigiannakis, I., Michail, O., Nikolaou, S., Pavlogiannis, A., Spirakis, P.G.: Passively mobile communicating machines that use restricted space. Theor. Comput. Sci. 412(46), 6469–6483 (2011)

    Article  MathSciNet  Google Scholar 

  5. Chatzigiannakis, I., Mylonas, G., Vitaletti, A.: Urban pervasive applications: challenges, scenarios and case studies. Comput. Sci. Rev. 5(1), 103–118 (2011)

    Article  Google Scholar 

  6. Chatzigiannakis, I., Spirakis, P.G.: The dynamics of probabilistic population protocols. In: Taubenfeld, G. (ed.) DISC 2008. LNCS, vol. 5218, pp. 498–499. Springer, Heidelberg (2008). doi:10.1007/978-3-540-87779-0_35

    Chapter  Google Scholar 

  7. Czyzowicz, J., Ga̧sieniec, L., Kosowski, A., Kranakis, E., Spirakis, P.G., Uznański, P.: On convergence and threshold properties of discrete Lotka-Volterra population protocols. In: Halldórsson, M.M., Iwama, K., Kobayashi, N., Speckmann, B. (eds.) ICALP 2015. LNCS, vol. 9134, pp. 393–405. Springer, Heidelberg (2015). doi:10.1007/978-3-662-47672-7_32

    Chapter  MATH  Google Scholar 

  8. Diamadi, Z., Fischer, M.J.: A simple game for the study of trust in distributed systems. Wuhan Univ. J. Nat. Sci. 6(1–2), 72–82 (2001)

    Article  Google Scholar 

  9. Galstyan, A., Lerman, K.: Analysis of a stochastic model of adaptive task allocation in robots. In: Brueckner, S.A., Di Marzo Serugendo, G., Karageorgos, A., Nagpal, R. (eds.) ESOA 2004. LNCS, vol. 3464, pp. 167–179. Springer, Heidelberg (2005). doi:10.1007/11494676_11

    Chapter  Google Scholar 

  10. Guerraoui, R., Ruppert, E.: Names trump malice: tiny mobile agents can tolerate Byzantine failures. In: Albers, S., Marchetti-Spaccamela, A., Matias, Y., Nikoletseas, S., Thomas, W. (eds.) ICALP 2009. LNCS, vol. 5556, pp. 484–495. Springer, Heidelberg (2009). doi:10.1007/978-3-642-02930-1_40

    Chapter  Google Scholar 

  11. Hartman, P.: A lemma in the theory of structural stability of differential equations. Am. Math. Soc. 11(4), 610–620 (1960)

    Article  MathSciNet  Google Scholar 

  12. Hirsch, M., Smale, S.: Differential Equations, Dynamical Systems and Linear Algebra. Academic Press, London (1974)

    MATH  Google Scholar 

  13. Hofbauer, J., Sigmund, K.: Evolutionary Games and Population Dynamics. Cambridge University Press, Cambridge (1998)

    Book  Google Scholar 

  14. Kleinrock, L.: Queueing Systems, Theory, vol. I. Wiley, Hoboken (1975)

    MATH  Google Scholar 

  15. Kurtz, T.G.: Approximation of Population Processes (1981)

    Google Scholar 

  16. Michail, O., Chatzigiannakis, I., Spirakis, P.G.: Mediated population protocols. Theor. Comput. Sci. 412(22), 2434–2450 (2011)

    Article  MathSciNet  Google Scholar 

  17. Mitzenmacher, M.: Analyses of load stealing models based on families of differential equations. Theory Comput. Syst. 34(1), 77–98 (2001)

    Article  MathSciNet  Google Scholar 

  18. Mitzenmacher, M., Upfal, E.: Probability and Computing: Randomized Algorithms and Probabilistic Analysis. Cambridge University Press, Cambridge (2005)

    Book  Google Scholar 

  19. Weibull, J.W.: Evolutionary Game Theory. MIT Press, Cambridge (1997)

    MATH  Google Scholar 

  20. Wormald, N.C.: Differential equations for random processes and random graphs. Ann. Appl. Probab. 5, 1217–1235 (1995)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ioannis Chatzigiannakis .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Chatzigiannakis, I., Spirakis, P. (2017). The Dynamics and Stability of Probabilistic Population Processes. In: Spirakis, P., Tsigas, P. (eds) Stabilization, Safety, and Security of Distributed Systems. SSS 2017. Lecture Notes in Computer Science(), vol 10616. Springer, Cham. https://doi.org/10.1007/978-3-319-69084-1_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-69084-1_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-69083-4

  • Online ISBN: 978-3-319-69084-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics