
ar
X

iv
:1

70
7.

07
65

9v
1

 [
cs

.D
C

]
 2

4
Ju

l 2
01

7

An Improved Approximate Consensus Algorithm

in the Presence of Mobile Faults

Lewis Tseng

Computer Science
Boston College

Email: lewis.tseng@bc.edu

Abstract. This paper explores the problem of reaching approxi-
mate consensus in synchronous point-to-point networks, where each
pair of nodes is able to communicate with each other directly and
reliably. We consider the mobile Byzantine fault model proposed
by Garay ’94 – in the model, an omniscient adversary can corrupt
up to f nodes in each round, and at the beginning of each round,
faults may “move” in the system (i.e., different sets of nodes may
become faulty in different rounds). Recent work by Bonomi et al.
’16 proposed a simple iterative approximate consensus algorithm
which requires at least 4f + 1 nodes. This paper proposes a novel
technique of using “confession” (a mechanism to allow others to
ignore past behavior) and a variant of reliable broadcast to im-
prove the fault-tolerance level. In particular, we present an approx-
imate consensus algorithm that requires only ⌈7f/2⌉+1 nodes, an
⌊f/2⌋ improvement over the state-of-the-art algorithms. Moreover,
we also show that the proposed algorithm is optimal within a family
of round-based algorithms.

http://arxiv.org/abs/1707.07659v1

1

1 Introduction

Fault-tolerant consensus has received significant attentions over the past three
decades since the seminal work by Lamport, Shostak, and Pease [14]. Recently,
a new type of fault model – mobile fault model – has been proposed to address
the needs in emerging areas such as mobile robot systems, sensor networks, and
smart phones [20]. The mobile fault model (in the round-based computation
systems) has the following two characteristics:

– Up to f nodes may become faulty in a given round, and

– Different sets of nodes may become faulty in different rounds.

This type of fault model is very different from the traditional “fixed” fault model
[14,15,2] – once a node becomes faulty, it remains faulty throughout the lifetime
of the computation.

The mobile fault model is motivated by the observation that for long-living
computations, e.g., aggregation, leader election, and clock synchronization, nodes
may experience different phases throughout the lifetime such as cured/curing,
healthy, and faulty phases [20]. For example, a worm-type of malware may grad-
ually infect and corrupt healthy nodes while some infected nodes detected the
malware and became cured (e.g., by routine checks from administrators) [20].
Another example is that fragile sensor nodes or robots may be impacted by the
environment change, e.g., sensor malfunction due to high wind [5].

A rich set of mobile Byzantine fault models has been proposed [4,7,9,16], and
subsequent work addressed the consensus problem in these models, e.g., [3,5,6].
These models are all defined over the round-based computation system (to be
formally defined in Section 3.1), and they differ in two main dimensions [5,6]:
(i) at which point in a round, faults can “move” to other nodes? and (ii) does
a node have a knowledge when it is cured (i.e., after a fault moves to another
node)? In this paper, we adopt the model proposed by Garay [9]:

– At the beginning of round t, the Byzantine adversary picks the set of up to
f nodes that behave faulty in round t, and

– Once a node is cured (i.e., the node that was faulty in the previous round,
and becomes fault-free in the current round), it is aware of the condition and
can remain silent to avoid disseminating faulty information.

Recently, in Garay’s model, Banu et al. [3] proposed an exact Byzantine
consensus algorithm for at least 4f + 1 nodes, and Bonomi et al. [5,6] proposed
an iterative approximate Byzantine consensus algorithm for at least 4f+1 nodes.
Bonomi et al. also proved that for a constrained class of memory-less algorithms,
their iterative algorithm is optimal. In this paper, we show that 4f+1 is not tight
for a more general class of algorithms. In particular, we present an approximate
consensus algorithm that requires only ⌈7f/2⌉+ 1 nodes.

2

Mobile Faults and Round-based Algorithms The mobile Byzantine fault
model considered in this paper is defined over round-based algorithms, in which
the system proceeds in synchronous rounds that consist of three steps: send,
receive, compute [5,6,9]. There are three types of nodes in the system: faulty,
healthy, and cured. For a slight abuse of terminology, we also call healthy and
cured nodes as fault-free nodes. In the round-based algorithms, each fault-free
node maintains a special state variable v. After a sufficient number of rounds,
the state variable v can be viewed as the output of the fault-free nodes.1 With
mobile faults, each node may become Byzantine faulty and have its local storage
(including the state variable and other bookkeeping variables) corrupted in any
round. When a node is cured, it needs to recover its state variable and potentially
other information. Therefore, for a given round, we are only interested in the
state variable v at the healthy nodes, since if majority of nodes remain healthy,
cured nodes can easily learn a fault-free state variable from other nodes.

Approximate Consensus Approximate consensus can be related to many
distributed computations in emerging areas, such as data aggregation [12], de-
centralized estimation [17], and flocking [11]; hence, the problem of reaching
approximate consensus in the presence of Byzantine faults has been studied ex-
tensively, including synchronous systems [8], asynchronous systems [1], arbitrary
networks [19], transient link faults [18], and time-varying networks [10] · · · etc.
Bonomi et al. [5,6] are among the first to study approximate consensus algo-
rithms in the presence of mobile Byzantine fault models.

Roughly speaking, the round-based approximate consensus algorithms of in-
terest have the properties below, which we will define formally in Section 3.1:

– Initial state of each node is equal to a real-valued input provided to that
node.

– Validity: after each round of an algorithm, the state variable v of each healthy
node must remain in the range of the initial values of fault-free nodes.

– Convergence: for ǫ > 0, after a sufficiently large number of rounds, the state
variable of the healthy nodes are guaranteed to be within ǫ of each other.

Main Contribution

– We propose an approximate consensus algorithm that requires only ⌈7f/2⌉+
1 nodes. The algorithm relies on “confession” (a mechanism to ask others to
ignore past behavior) and a variant of reliable broadcast (to learn information
from other healthy nodes reliably). The technique may be applied to other
problems under the mobile fault models.

– We show that the proposed algorithm is optimal within a family of round-
based algorithms, i.e., which only allows nodes to “remember” what hap-
pened in the previous rounds (but not the entire execution history).

1 Using the technique from [1], nodes can also estimate the number of required rounds
and decide when to “output” the state variable v.

3

2 Related Work

There is a rich literature on consensus-related problems [15,2]. Here, we only
discuss two most relevant categories.

Exact Consensus under Mobile Byzantine Faults References [4,7,9,16,3]
studied the problem of reaching exact consensus under different mobile Byzantine
fault models. In exact consensus algorithms, every fault-free node reaches exactly
the same output. Garay is among the first to study mobile faults [9]. In his model,
the faults can “move” freely, and the cured nodes are aware of its condition.
Garay proposed an algorithm requiring 6f + 1 nodes [9]. Later, Banu et al. [3]
improved the fault-tolerance level to 4f+1 nodes. References [4,16] considered a
mobile fault model in which nodes are not aware when they are cured. Sasaki et
al. [16] presented an algorithm requiring at least 6f +1 nodes, whereas, Bonnet
et al. [4] proposed an algorithm requiring at least 5f + 1 nodes, and proved
that 5f + 1 is tight in their fault model. Reference [7] also assumed that the
nodes has the knowledge when it is cured; however, the ability of the adversary
is more constrained than the above models. The adversary cannot choose an
arbitrary set of nodes to be faulty, i.e., the faults can only “move” with message
dissemination. Buhrman et al. [7] presented an optimal algorithm that requires
3f +1 nodes. References [4,7,9,16,3] considered only exact consensus; hence, the
techniques are very different from the one in this paper. Moreover, to the best of
our knowledge, we are the first to show that (approximate) consensus is solvable
with only ⌈7f/2⌉+ 1 nodes in Garay’s model.

Approximate Consensus Approximate consensus can be related to many
distributed computations in networked systems, e.g., [12,17,11]. Since many net-
worked systems are tend to be fragile, the problem of reaching approximate
consensus in the presence of Byzantine faults has been studied extensively. Most
work assumed the “fixed” fault model; that is, once the Byzantine adversary
picks a faulty node, then throughout the execution of the algorithm, the node
remains faulty and will not be cured. Dolev et al. studied the problem in both
synchronous and asynchronous systems [8]. Dolev et al. proposed an optimal
synchronous algorithm, but the asynchronous one requires at least 5f +1 nodes,
which is only optimal within the family of iterative algorithms. Later, Abraham
et al. proposed an optimal asynchronous algorithm that requires only 3f + 1
nodes [1], which is optimal for all general algorithms. The technique in this pa-
per is inspired by the usage of “witness” and reliable broadcast in [1]; however,
due to different synchrony assumptions and fault models, our technique differs
from the ones in [1] (we will address more details in Sections 4 and 5.1).

Kieckhafer and Azadmanesh studied the behavior of iterative algorithms
(i.e., memory-less algorithms) and proved some lower bounds under Mixed-
Mode faults model, where nodes may suffer crash, omission, symmetric, and/or
asymmetric Byzantine failures [13]. Researchers also studied iterative approxi-
mate consensus under different communication assumptions, including arbitrary

4

communication networks [19], networks with transient link faults [18], and time-
varying networks [10] · · · etc. These works only assumed fixed fault model.

Bonomi et al. [5,6] are among the first to study approximate consensus algo-
rithms in the presence of mobile Byzantine fault models. They presented opti-
mal iterative algorithms under different mobile fault models, and they proposed
a mapping (or reduction) from the existing mobile Byzantine models to the
Mixed-Mode faults model [13]. As we will show later in this paper, the bound
does not hold for a more general class of algorithms. In other words, the “mem-
ory” from previous rounds helps improve the fault-tolerance level. This paper
essentially demonstrates how to use the “memory” effectively.

3 Preliminary

3.1 Models and Round-based Algorithms

System Model We consider a synchronous message-passing system of n nodes.
The communication is through a point-to-point network, in which each pair of
nodes is connected by a direct communication link. All the links are assumed
to be reliable, and the messages cannot be forged by the adversary. We assume
that n ≥ ⌈7f/2⌉+1, where f is the upper bound on the number of faulty nodes
in a given round.

Round-based Algorithms As in the prior work [9,3,5,6], we consider the
round-based algorithms in this paper. The algorithm consists of three steps:

– Send: send one message to all other nodes
– Receive: receive the messages from other nodes
– Compute: based on the messages and local states, perform local computation

In addition, each node also maintains a special state variable v such that
after a sufficient number of rounds, the state becomes the output at the node.
Note that Bonomi et al. only considered iterative algorithms [5,6], in which each
node only sends and keeps a real-value state at all time, and there is no other
information maintained (i.e., memory-less algorithms or iterative algorithms),
whereas, we and references [9,3] consider a more general types of algorithms,
where nodes may send and keep arbitrary state information.

Mobile Byzantine Fault Model In this paper, we consider mobile Byzantine
fault model proposed by Garay [9]. There are three types of nodes:

– Byzantine nodes: in the beginning of each round, up to f nodes may become
Byzantine faulty. A Byzantine faulty node may misbehave arbitrarily, and
the local storage may be corrupted. Possible misbehavior includes sending
incorrect and mismatching (or inconsistent) messages to different nodes. We
consider an omniscient adversary – a single adversary that control which set

5

of nodes would become faulty. Moreover, the Byzantine adversary is assumed
to have a complete knowledge of the execution of the algorithm, including
the states of all the nodes, contents of messages the other nodes send to each
other, and the algorithm specification.

– Cured nodes: a node is “cured” in the current round if it was faulty in the
previous round, and becomes fault-free in the beginning of the current round.
Under the model, a cured node has the knowledge that it just got cured, and
hence can choose to stay silent at the current round, since the local states
are potentially corrupted. A cured node follows the algorithm specification
– it receives messages and performs local computation accordingly.

– Healthy nodes: all the other nodes belong to the set of healthy nodes. Par-
ticularly, they follow the algorithm specification, and the local storage is not
corrupted in the past and current rounds.

3.2 Notation

Nodes: To facilitate the discussion, we introduce the following notations to rep-
resent sets of nodes throughout the paper:

– faulty[t]: the set of nodes that are faulty in round t

– cured[t]: the set of nodes that are cured in round t

– healthy[t]: the set of nodes that are healthy in round t

Nodes in healthy[t] ∪ cured[t] are said to be fault-free in round t.

Values: Given a given round t, let us define v[t], max state[t] and min state[t]:

– vi[t] is the special state variable (that later will be the output) maintained
at node i in the end of round t. Notation vi[0] is assumed to be the input
given to node i. For brevity, when the round index or node index is obvious
from the context, we will often ignore t or i.

– max state[t] = maxi∈healthy[t]∪cured[t] vi[t]. Notation max state[t] is the largest
state variable among the fault-free nodes at the end of round t. Since the
initial state of each node is equal to its input, max state[t] is equal to the
maximum value of the initial input at the fault-free nodes.

– min state[t] = mini∈healthy[t]∪cured[t] vi[t]. Notation min state[t] is the small-
est state variable among the fault-free nodes at the end of round t. Since the
initial state of each node is equal to its input, min state[t] is equal to the
minimum value of the initial input at the fault-free nodes.

6

3.3 Correctness of Round-based Approximate Algorithms

We are now ready to formally state the correctness condition of round-based
approximate algorithms under the mobile Byzantine fault model:

– Validity: ∀t > 0,

min state[t] ≥ min state[0] and max state[t] ≤ max state[0]

– Convergence: for a given constant ǫ, there exists an t such that

max state[t]− min state[t] < ǫ

4 Algorithm CC

We now present Algorithm CC (Consensus using Confession), a round-based
approximate algorithm. Throughout the execution of the algorithm, each node i
maintains a special state variable vi. Recall that vi[t] represents the state at node
i in the end of round t (i.e., after the state variable is updated). The convergence
condition requires the state variables vi[t] to converge for a large enough t.

Similar to the algorithms in [9,1], Algorithm CC proceeds in phases. There
are two phases in the algorithm: in the first phase (Collection Phase), nodes
exchange their state variables v and construct a vector E that stores others’ state
variables. Ei[j] represents the value that i receives from j. If j is faulty or cured,
Ei[j] may not be the state variable at node j. The second phase (Confession
Phase) has three functionalities:

– Exchange the vector E constructed in the Collection Phase. If a node i is
cured in the beginning of this phase (round t+1), then it sends ∅ to “confess”
to all other fault-free nodes that it was faulty and subsequently, fault-free
nodes will ignore messages from node i from the previous round. If node i is
faulty, it may choose to send confession to only a subset of nodes; however,
as long as we have enough redundancy, such misbehavior can be tolerated.

– Construct a vector V of “trustworthy” state variables. Vi[j] represents the
value what i believe is vj [t − 1], the state variable at node j in the end
of round t − 1. A value u from node j is “trustworthy” if node j does not
confess (Condition 2 below), and enough nodes confess or “endorse” the
value u (Condition 1 below). Node k is said to endorse the value u if node
k does not confess, sends legit message, and has Ek[j] = u. Node k may or
may not be healthy.

– Update the local state variable using the reduce function on the vector V .
The reduce function is designed to trim enough values from V so that none
of the extreme values proposed by faulty nodes is used.

7

4.1 Algorithm Specification

Algorithm CC: Steps to be executed by node i in round t for t ≥ 0

– Round t: +++ Collection Phase +++
• Send:

if i is cured,
send (⊥, i)

otherwise, send (vi[t− 1], i)

• Receive:2

receive (u, j) from node j

• Compute:
∗ Ei[j]← u
∗ if i is healthy,

vi[t]← vi[t− 1]

– Round t+ 1: +++ Confession Phase +++
• Send:

if i is cured,
send (∅, i) //Comment: “confess” faulty behavior

otherwise, send (Ei, i)

• Receive:
if a legitimate tuple (Ej , j) is received from node j,3

Ri[j]← Ej

• Compute:
∗ if the following two conditions are satisfied:
· Condition 1: there are ≥ n− f distinct nodes k such that (i)
Ri[k] = Ek 6= ∅ and Ek[j] = u, or (ii) Ri[k] = ∅

· Condition 2: Ri[j] 6= ∅

then //Comment: u is “trustworthy”

Vi[j]← u

otherwise,

Vi[j]←⊥

∗ update state variable as follows:

vi[t+ 1]← reduce(Vi)

2 If nothing is received from j, then u is assumed to be ⊥, a null value. Also, we
assume that a node can send a message to itself.

3 Here, Ej = ∅ is legitimate.

8

4.2 Reduce Function

Reduce function is widely used in iterative approximate Byzantine consensus
algorithms, e.g., [1,5,6,13,8]. We adopt the same structure: order the values,
trim potentially faulty values, and update local state. Different from the prior
work, our reduce function trims different number of values at each round. The
exact number depends on the number of ⊥ values received. A ⊥ value may be a
result of faulty behavior or a confession. Below, we define the number of values
to be trimmed.

Definition 1. Suppose that node i receives x ⊥ values in the vector Vi at round
t+ 1. Then, define

nTrimi =

{

f, if x ≤ f

⌈f − x−f
2 ⌉, otherwise

The value nTrim counts the number of potentially faulty values in the vector
Vi. In general, the more confessions that i sees in Vi, the less faulty values are in
Vi. Lemma 6 formally shows that nTrimi is large enough to trim all the extreme
values proposed by faulty nodes. Now, we present our reduce function below:

Reduce function: reduce(Vi) at node i

– Calculate nTrimi as per Definition 1.

– Remove all ⊥ values in Vi. Denote the new vector by V ′

i .

– Order V ′

i in a non-decreasing order. Denote the ordered vector by Oi.

– Trim the bottom nTrimi and the top nTrimi values in Oi. In other words,
generate a new vector containing the values Oi[nTrimi + 1], Oi[nTrimi +
2], · · · , Oi[|Oi| − nTrimi − 1]. Denote the trimmed vector by Ot

i .

– Return

min(Ot
i) + max(Ot

i)

2
(1)

5 Analysis

5.1 Key Properties of V

Before the reduce function is executed, the vector V at all fault-free nodes
satisfies nice properties as stated in the lemmas below. The first four lemmas
(Integrity I-IV) show that Algorithm CC achieves properties similar to reliable
broadcast [1] – all fault-free nodes are able to see identical values in V if the
sender node is either healthy or cured. Reliable broadcast in [1] also guarantees

9

Uniqueness – if the value sent from a node is not ⊥, then the value appears
identically in all fault-free node’s V vector. However, the V vectors in Algorithm
CC may still contain faulty values, since a faulty node that just moved in round
t + 1 can send different E vectors to different fault-free nodes to “endorse”
different values. This is the main reason that why Algorithm CC requires more
than 3f + 1 nodes. In the proofs below, we will often denote vi[t − 1] by v for
brevity. The indices should be clear from the context.

Lemma 1. (Integrity I) If node i is healthy in both rounds t and t + 1, then
for all fault-free j ∈ healthy[t+1]∪cured[t+1], Vj [i] = vi[t− 1], the value sent
by node i in round t.

Proof. Fix a node i ∈ healthy[t]∩healthy[t+1] which sends the value vi[t− 1]
in round t. In the receive step of round t, each node k ∈ healthy[t] ∪ cured[t]
receives the value and has Ek[i] = v. By definition, |healthy[t]∪cured[t]| ≥ n−f .
Suppose in the beginning of round t + 1, b ≤ f of the mobile Byzantine faults
move to the nodes in healthy[t] ∪ cured[t]. Then, observe that

– |healthy[t]∪ cured[t]| − b healthy nodes send a legitimate tuple to all other
nodes, and Ek 6= ∅ and Ek[i] = v for node k ∈ healthy[t] ∪ cured[t] −
faulty[t+ 1]. Denote this set of healthy nodes by A.

– Since b mobile faults move in round t+1, exactly b nodes are cured and send
the confession (∅) in round t+ 1. Denote this set of cured nodes by B.

Note that nodes in A∪B are either cured or healthy; hence, all fault-free nodes
will observe their behavior identically.

Now, consider a node j ∈ healthy[t+1]∪cured[t+1]. From its perspective,
Condition 1 in the compute step in round t + 1 is met due to the observations
above and the fact that |A|+|B| ≥ (|healthy[t]∪cured[t]|−b)+b = |healthy[t]∪
cured[t]| ≥ n − f . Moreover, by definition, i is healthy in round t + 1; hence,
Condition 2 is also met. Therefore, node j will have Vj [i] = v. �

Lemma 2. (Integrity II) If node i is healthy in round t and becomes faulty
in round t + 1, then for all fault-free j ∈ healthy[t + 1] ∪ cured[t + 1], either
Vj [i] =⊥ or Vj [i] = vi[t− 1], the value sent by node i in round t.

Proof. The proof is by contradiction. Suppose that at some node j ∈ healthy[t+
1] ∪ cured[t+ 1], Vj [i] = u such that u 6=⊥. Now, observe that:

– Obs 1: Vj [i] = u only if there are enough node k that endorses or confesses
(Condition 1 in Algorithm CC). Denote this set of nodes by Wu. And we
have |Wu| ≥ n− f .

– Obs 2: Since node i is healthy in round t, every node k ∈ healthy[t+ 1] did
not endorse value u (they heard value v and endorses v in round t).

– Obs 3: Obs 2 together with the fact that |healthy[t + 1]| ≥ n − 2f imply
that there are ≤ n− (n− 2f) = 2f nodes in the set Wu.

We have |Wu| ≤ 2f < ⌈7f/2⌉+ 1− f = ⌈5f/2⌉+ 1, contradicting Obs 1. �

10

Lemma 3. (Integrity III) If node i is cured in round t, then for all fault-free
j ∈ healthy[t+ 1] ∪ cured[t+ 1], Vj [i] =⊥.

The proof is similar to the proof of Lemma 1 and omitted here for brevity.

Lemma 4. (Integrity IV) If node i is cured in round t+1, then for all fault-
free j ∈ healthy[t+ 1] ∪ cured[t+ 1], Vj [i] =⊥.

Proof. Since node i is cured in round t+ 1, it will send the confession (∅) to all
fault-free nodes in round t + 1. Thus, for all j ∈ healthy[t + 1] ∪ cured[t + 1],
Rj [i] = ∅, violating Condition 2. Therefore, Vj [i] =⊥. �

The only case left is analyzing the behavior of nodes which remain faulty in
both rounds t and t+1. These nodes are indeed able to produce different values
in the V vectors at fault-free nodes; however, by construction, these nodes are
limited in number. To see this, consider the following two scenarios:

– When no faulty node moves, i.e., faulty[t] = faulty[t+ 1]. Then, all fault-
free nodes receive identical V vectors, since Condition 1 cannot be satisfied
if faulty nodes send different values to different nodes in round t.

– When all faulty nodes move, i.e., faulty[t] ∩ faulty[t + 1] = ∅. Then, by
Lemmas 2, 3, and 4, no fault-free nodes will see different values in round
t+ 1.

The lemma below characterizes the bound on the number of different values.

Lemma 5. Suppose n ≥ ⌈7f/2⌉+1. For a pair of fault-free nodes i, j ∈ healthy[t+
1] ∪ cured[t+ 1], at most ⌊f/2⌋ − 1 non-⊥ values differs in Vi and Vj . In other
words, there are ≥ n− ⌈f/2⌉+ 1 identical values in Vi and Vj .

Proof. The proof is by contradiction. Suppose that there exists a pair of fault-
free nodes i, j such that ⌊f/2⌋ different values appear in Vi and Vj . Consider the
value belonging to some node k, i.e., Vi[k] 6= Vj [k] and Vi[k], Vj [k] 6=⊥. Then, we
can make the following observations:

– Obs 1: By Lemmas 1, 2, 3, and 4, node k must remain faulty in both rounds
t and t+ 1.

– Obs 2: By Condition 1, there are ≥ n− f nodes that send the value Vi[k] or
send the confession (∅) to node i in round t+1. Denote this set of nodes by
Wi. For easiness of discussion, let us call these nodes the “witnesses” of the
value Vi[k].

– Obs 3: By assumption and Obs 1, at most ⌈f/2⌉ faults move from round t
to round t+ 1.

– Obs 4: Among the nodes in Wi, at least |Wi| − (f + ⌈f/2⌉) are nodes that
are healthy in both rounds t and t+1. This is because (i) by Obs 3, at most
⌈f/2⌉ faults move, and (ii) cured node l in round t+1 (i.e., l ∈ cured[t+1])
send the confession (∅) in round t+ 1, which result into Ri[l] = Rj [l] = ∅ in
the receive step of round t+ 1.

11

Now, consider node j. By Obs 4, it has ≤ n− (|Wi| − (f + ⌈f/2⌉)) witnesses
of the value Vj [k], since this is the number of nodes that are healthy in both
rounds t and t+1 and endorses the value Vi[k]. Denote this set of witness of the
value Vj [k] by Wj . Then, we have

|Wj | ≤ n− (|Wi| − (f + ⌈f/2⌉))

≤ n− ((n− f)− (f + ⌈f/2⌉)) = ⌈5f/2⌉ by Obs 2

< ⌈5f/2⌉+ 1 = n− f

Therefore, Condition 1 is not satisfied at node j; hence, Vj [k] can only be
either the value Vi[k] or ⊥, a contradiction. �

5.2 Correctness

For brevity, we only prove the correctness properties for healthy nodes, since
cured nodes will have valid state variables if they remain fault-free in the next
round. We begin with a useful lemma on nTrim (as per Definition 1). Here, a
faulty value is the non-⊥ value sent by faulty nodes.

Lemma 6. For a given odd round t ≥ 1 and i ∈ healthy[i], there are at most
nTrimi faulty values in Vi[t].

Proof. If Vi[t] contains ≤ f ⊥ values, then the lemma holds by assumption. Now,
consider the case when there are x ⊥ values in Vi[t], where x > f . There are
only three ways to produce ⊥ values: (i) by cured nodes in round t− 1 (due to
Lemma 3), (ii) by cured nodes in round t (due to due to Lemma 4), and (iii)
by faulty nodes in round t. Assume that b faults move in round t and b′ faulty
nodes produce ⊥ values. Observe that (i) at most f cured nodes in round t− 1,
(ii) exactly b cured nodes in round t, and (iii) exactly f − (b + b′) faulty values
in Vi[t]. Then, we have

nTrimi = ⌈f −
x− f

2
⌉ by Definition 1

≥ ⌈f −
(b+ f + b′)− f

2
⌉ = ⌈f −

b+ b′

2
⌉ by observations above

≥ f − (b + b′) = number of faulty values in Vi �

Lemma 7. (Validity) For a given round t ≥ 0, if i ∈ healthy[t], then

max state[0] ≥ vi[t] ≥ min state[0]

Proof. The proof is by induction on the number of rounds.

– Initial Step: When t = 0, the statement holds, since by definition,
max state[0] ≥ vi[0] ≥ min state[0].

12

– Induction Step: suppose the statement holds for some h > 0, consider round
h+1. If h is a Collection Round (h is even), then the statement holds trivially,
since vi[h] ← vi[h− 1] in the compute step. Now, consider the case when h
is odd (h is an Update Round). Lemma 6 implies that in the trim step of the
reduce function (the fourth step), all the faulty values will be trimmed if
they are too large or too small. Therefore, the maximal and minimal values
in Ot

i will always be inside the range of the maximal and minimal values of
state values of the fault-free nodes in round h. Hence the return value of the
reduce function satisfies Validity by the induction hypothesis. �

Before proving convergence, we show a lemma that bounds the range of the
updated state variables. Recall that max state[t] and min state[t] represent the
maximal and minimal state variables, respectively, at healthy nodes in round t.
We only care about the state variables in the even round, since in the odd round,
the state variable remains the same at healthy nodes.

Lemma 8. For some even integer t > 0, we have

max state[t+ 1]− min state[t+ 1] ≤
max state[t− 1]− min state[t− 1]

2

Proof. To prove the lemma, we need to show that for any pair of fault-free nodes
i, j, we have

|vj [t+ 1]− vi[t+ 1]| ≤
max state[t− 1]− min state[t− 1]

2
(2)

Let Vi and Vj denote the V vectors at i and j, respectively, at the compute
step (the third step) of round t+1. Then, define R = Vi∩Vj . Recall that O

t
i and

Ot
j represent the trimmed vector in the reduce function at i and j, respectively.

Then, we have the following key claim:

Claim. Let m be the median of the values in R. Then, m ∈ Ot
i and m ∈ Ot

j .

Proof. We make the following observations:

– Obs 1: By Lemma 5, |R| ≥ n− ⌈f/2⌉+ 1 ≥ 3f + 1.
– Obs 2: Suppose there are x ⊥ values in R. Consider two cases:
• Case I: if x ≤ f , then m ∈ Ot

i , because after removing f ⊥ values from
Vi, we trim f elements from each side. Similarly, we can show m ∈ Ot

j .
• Case II: if x ≥ f , then m ∈ Ot

i , because after removing x ⊥ values from
Vi, we trim nTrimi elements from each side. In other words, we trim at
most

x+ 2 ∗ nTrimi = x+ 2⌈(f −
x− f

2
)⌉ = x+ 2f − x+ f = 3f

values from R. This together with Obs 1 implies that m ∈ Ot
i . Similarly,

we can show m ∈ Ot
j .

These two cases proves the claim. �

13

The rest of the proof of Lemma 8 follows from the claim using the standard
tricks from prior work, e.g., [15,1,19]. We include the proof in Appendix A. �

Lemma 8 and simple arithmetic operations imply the following:

Lemma 9. (Convergence) Given a ǫ > 0, there exists a round t such that
max state[t]− min state[t] < ǫ.

Lemmas 7 and 9 imply that Algorithm CC is correct:

Theorem 1. (Correctness) Algorithm CC solves approximate consensus in
under Garay’s model given that n ≥ ⌈7f/2⌉+ 1.

6 Impossibility Result

This section proves that for a certain family of round-based algorithms, ⌈7f/2⌉+
1 is the lower bound on the number of nodes (fault-tolerance level), proving that
Algorithm CC is optimal within this family of algorithms.

2-Memory Round-based Algorithms As discussed before, the iterative al-
gorithms considered in [5,6,8,19] are memory-less, i.e., it can only send its own
state, and it updates state in every round. As proved in [5,6], such type of
memory-less algorithms requires 4f + 1 nodes. For the lower bound proof, we
consider a slightly more general type of algorithms – 2-memory round-based al-
gorithms – in which nodes can send arbitrary messages, carry information from
the previous round, but nodes have to update their state variables every two
rounds (hence, the name 2-memory). While the definition seems constrained,
many Byzantine consensus algorithms belong to this family of algorithms, e.g.,
[9,3,1]. Note that the original algorithm proposed by Lamport, Shostak, and
Pease [14] does not belong to 2-memory round-based algorithms, as nodes col-
lect many more rounds of information before updating their state variables.

Lower Bound Proof The lower bound proof is similar to the lower bound
proof for iterative algorithms, e.g., [8,19]; however, we also need to consider how
faulty nodes move, which makes the proof slightly more complicated. Note that
using Integrity I-IV (Lemmas 1, 2, 3, and 4), it is fairly easy to show that for
f = 1, Algorithm CC solves the problem for n = 3f + 1 = 4.

Theorem 2. It is impossible for any 2-memory round-based algorithm to solve
approximate consensus under Garay’s model if n ≤ ⌈7f/2⌉ and f > 1.

Proof. Consider the case when f = 2, and n = 7. Denote by the set of nodes
S = {a, b, c, d, e, f, g}. For simplicity, assume that a node can be in the cured
phase in round 0. Then, suppose in round 0: a, b are cured, c, d are faulty, and
e, f, g are healthy. And, nodes e, f has input m, and node g has input m′, where
m′ > m and m′ −m > ǫ.

14

In round 0, faulty nodes c, d behave to nodes a, e, f as if they have input m,
and behave to nodes b, g as if they have input m′. In the beginning of round 1,
the adversary moves the fault from node d to node e; hence, a, b, f, g are healthy,
c, e are faulty, d is cured in round 1. The new faulty node e and the original faulty
node c behave in the following way (i) behave to nodes a, d, f as if node c, d, e
have input m, (ii) behave to node b, g as if nodes c, d, e have input m′, and (iii)
otherwise follow the algorithm specification.

Now, from the perspective of node f , there are two scenarios:

– If nodes c, d are faulty, then the fault-free inputs are m,m,m′, and
– If nodes d, g are faulty, then the fault-free inputs are m,m,m, and

By assumption, node e needs to update the state variable now and it could
not distinguish from the two scenarios, since it cannot exchange more messages.
Therefore, node e must choose some value that satisfies the validity condition in
both scenarios, and the value is m.4 Therefore, in round 1, the state variable at
node e remains m. We can show the same situation holds for node a, d.

From the perspective of node g, there are also two scenarios:

– If nodes c, d are faulty, then the fault-free inputs are m,m,m′, and
– If nodes e, f are faulty, then the fault-free inputs are m′,m′,m′, and

Then, node g has to choose m′ to satisfy the validity condition in round 1.
Similarly, node b has to choose m′.

Then in round 2, the adversary picks nodes a, b to be faulty. Observe that
this scenario is identical to round 0: two cured nodes, two faulty nodes, and three
healthy nodes with state variables m,m, and m′. Therefore, the adversary can
behave in the same way so that no healthy node will change their state variables;
hence, convergence cannot be achieved. �

7 Conclusion

Under Garay’s mobile Byzantine fault model [9], we present an approximate con-
sensus algorithm that requires only ⌈7f/2⌉+1 nodes, an ⌊f/2⌋ improvement over
the state-of-the-art algorithms [5,6]. Moreover, we also show that the proposed
algorithm is optimal within the family of 2-memory round-based algorithms.
Whether ⌈7f/2⌉+ 1 is tight for general approximate algorithms remains open.

References

1. I. Abraham, Y. Amit, and D. Dolev. Optimal resilience asynchronous approximate
agreement. In OPODIS, pages 229–239, 2004.

4 There are other scenarios not discussed in the proof for brevity; however, m is the
only value works for each of the scenarios.

15

2. H. Attiya and J. Welch. Distributed Computing: Fundamentals, Simulations, and
Advanced Topics. Wiley Series on Parallel and Distributed Computing, 2004.

3. N. Banu, S. Souissi, T. Izumi, A. N. Bessani, M. Correia, N. F. Neves, H. Buhrman,
and J. A. Garay. An improved byzantine agreement algorithm for synchronous
systems with mobile faults. 2012.

4. F. Bonnet, X. Défago, T. D. Nguyen, and M. Potop-Butucaru. Tight Bound on
Mobile Byzantine Agreement, pages 76–90. Springer Berlin Heidelberg, 2014.

5. S. Bonomi, A. D. Pozzo, M. Potop-Butucaru, and S. Tixeuil. Approximate agree-
ment under mobile byzantine faults. CoRR, abs/1604.03871, 2016.

6. S. Bonomi, A. D. Pozzo, M. Potop-Butucaru, and S. Tixeuil. Approximate agree-
ment under mobile byzantine faults. In 2016 IEEE 36th International Conference
on Distributed Computing Systems (ICDCS), pages 727–728, June 2016.

7. H. Buhrman, J. A. Garay, and J. H. Hoepman. Optimal resiliency against mobile
faults. In Twenty-Fifth International Symposium on Fault-Tolerant Computing.
Digest of Papers, pages 83–88, June 1995.

8. D. Dolev, N. A. Lynch, S. S. Pinter, E. W. Stark, and W. E. Weihl. Reaching
approximate agreement in the presence of faults. J. ACM, 33:499–516, May 1986.

9. J. A. Garay. Reaching (and maintaining) agreement in the presence of mobile faults
(extended abstract). In Proceedings of the 8th International Workshop on Dis-
tributed Algorithms, WDAG ’94, pages 253–264, London, UK, UK, 1994. Springer-
Verlag.

10. A. Haseltalab and M. Akar. Approximate byzantine consensus in faulty asyn-
chronous networks. In 2015 American Control Conference (ACC), pages 1591–
1596, July 2015.

11. A. Jadbabaie, J. Lin, and A. Morse. Coordination of groups of mobile autonomous
agents using nearest neighbor rules. Automatic Control, IEEE Transactions on,
48(6):988 – 1001, june 2003.

12. D. Kempe, A. Dobra, and J. Gehrke. Gossip-based computation of aggregate
information. pages 482–491. IEEE Computer Society, 2003.

13. R. M. Kieckhafer and M. H. Azadmanesh. Reaching approximate agreement
with mixed-mode faults. IEEE Transactions on Parallel and Distributed Systems,
5(1):53–63, Jan 1994.

14. L. Lamport, R. Shostak, and M. Pease. The byzantine generals problem. ACM
Trans. Program. Lang. Syst., 4(3):382–401, July 1982.

15. N. A. Lynch. Distributed Algorithms. Morgan Kaufmann, 1996.
16. T. Sasaki, Y. Yamauchi, S. Kijima, and M. Yamashita. Mobile Byzantine Agree-

ment on Arbitrary Network, pages 236–250. Springer International Publishing,
Cham, 2013.

17. I. Schizas, A. Ribeiro, and G. Giannakis. Consensus in ad hoc WSNs with noisy
links – Part I: Distributed estimation of deterministic signals. Signal Processing,
IEEE Transactions on, 56(1):350–364, Jan 2008.

18. L. Tseng and N. H. Vaidya. Iterative approximate consensus in the presence of
Byzantine link failures. In Networked Systems - Second International Conference,
NETYS 2014, Marrakech, Morocco, May 15-17, 2014. Revised Selected Papers,
pages 84–98, 2014.

19. N. H. Vaidya, L. Tseng, and G. Liang. Iterative approximate Byzantine consen-
sus in arbitrary directed graphs. In Proceedings of the thirty-first annual ACM
symposium on Principles of distributed computing, PODC ’12. ACM, 2012.

20. M. Yung. The mobile adversary paradigm in distributed computation and sys-
tems. In Proceedings of the 2015 ACM Symposium on Principles of Distributed
Computing, pages 171–172. ACM, 2015.

16

Appendices

A Proof of Lemma 8

The claim proved in Lemma 8 implies that max(Ot
i) ≥ m, and by the last step

of the reduce function and the fact that all the extreme value proposed by
faulty nodes are trimmed (by Lemma 6), we have min(Ot

i) ≥ min state[t− 1].
Therefore,

vi[t+ 1] ≥
m+ min state[t− 1]

2

Similarly, we can show min(Ot
i) ≤ m, max(Ot

i) ≥ max state[t− 1], and

vj [t+ 1] ≤
m+ max state[t− 1]

2

Now, we need to show that (2) holds. Without loss of generality, assume that
vj [t+ 1] ≥ vi[t+ 1]. Then, we have

vj [t+ 1]− vi[t+ 1] ≤
m+ max state[t− 1]

2
−

m+ min state[t− 1]

2

=
max state[t− 1]− min state[t− 1]

2

This completes the proof.

	An Improved Approximate Consensus Algorithm in the Presence of Mobile Faults
	1 Introduction
	2 Related Work
	3 Preliminary
	3.1 Models and Round-based Algorithms
	3.2 Notation
	3.3 Correctness of Round-based Approximate Algorithms

	4 Algorithm CC
	4.1 Algorithm Specification
	4.2 Reduce Function

	5 Analysis
	5.1 Key Properties of V
	5.2 Correctness

	6 Impossibility Result
	7 Conclusion
	A Proof of Lemma ??

