Abstract
Native RDF (http://www.w3.org/RDF/) stores have been making enormous progress in closing the performance gap compared to relational database management systems (RDBMS). But this small gap, however, still prevents the adoption of RDF stores in scenarios for large-scale enterprise applications. We solve this problem with our native RDF store QUAD and its fundamental design principles. It is based on a vector database schema for quadruples and it is realized by facilitating various index data structures. QUAD also comprises approaches to optimize the SPARQL query execution plan by using heuristic transformations. In this short paper, we briefly introduce QUAD and sketch in which tasks of the Mighty Storage Challenge we will attend to benchmark the current performance capabilities.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
- 2.
Here, “S” stands for Subject, “P” for Predicate, “O” for Object, and “G” for Graph.
- 3.
- 4.
- 5.
- 6.
- 7.
References
Potocki, A., Polukhin, A., Drobyazko, G., Hladky, D., Klintsov, V., Unbehauen, J.: OntoQuad: native high-speed RDF DBMS for semantic web. In: Klinov, P., Mouromtsev, D. (eds.) KESW 2013. CCIS, vol. 394, pp. 117–131. Springer, Heidelberg (2013). doi:10.1007/978-3-642-41360-5_10
Harris, S., Seaborne, A.: SPARQL 1.1 Query Language. Technical report, W3C Recommendation (2013). https://www.w3.org/TR/sparql11-query/
Harth, A., Decker, S.: Optimized index structures for querying RDF from the web. In: LA-WEB (Latin American Web Congress) (2005)
Harth, A., Umbrich, J., Hogan, A., Decker, S.: YARS2: a federated repository for querying graph structured data from the web. In: Aberer, K., et al. (eds.) ASWC/ISWC -2007. LNCS, vol. 4825, pp. 211–224. Springer, Heidelberg (2007). doi:10.1007/978-3-540-76298-0_16
Harth, A., Decker, S.: Yet Another RDF Store: Perfect Index Structures for Storing Semantic Web Data With Context, DERI Technical report (2004)
Baolin, L., Bo, H.: HPRD: a high performance RDF database. In: Li, K., Jesshope, C., Jin, H., Gaudiot, J.-L. (eds.) NPC 2007. LNCS, vol. 4672, pp. 364–374. Springer, Heidelberg (2007). doi:10.1007/978-3-540-74784-0_37
Weiss, C., Karras, P., Bernstein, A.: Sextuple Indexing for Semantic Web Data Management. PVLDB 1(1), 1008–1019 (2008)
Abadi, D.J., Marcus, A., Madden, S., Hollenbach, K.J.: Scalable semantic web data management using vertical partitioning. In: VLDB, pp. 411–422 (2007)
Wood, D., Gearon, P., Adams, T.: Kowari: a platform for semantic web storage and analysis. In: XTeGh (2005)
Neumann, T., Weikum, G.: The RDF-3X engine for scalable management of RDF data. J. VLDB 19(1), 91–113 (2010)
Neumann, T., Weikum, G.: RDF-3X: a RISC-style engine for RDF. PVLDB 1(1), 647–659 (2008)
Stocker, M., Seaborne, A., Bernstein, A., Kiefer, C., Reynolds, D.: SPARQL basic graph pattern optimization using selectivity estimation. In: WWW 2008, pp. 595–604. ACM, New York (2008)
Gomathi, R., Sathya, C.: Efficient optimization of multiple SPARQL queries. IOSR J. Comput. Eng. (IOSR-JCE) 8(6) (2013), pp. 97–101 (2013). www.iosrjournals.org, e-ISSN: 2278–0661, p- ISSN: 2278–8727
Graefe, G.: Query evaluation techniques for large databases. ACM Comput. Surv. 25(2), 73–170 (1993)
Johnson, T., Shasha, T.: 2Q: A low overhead high performance buffer management replacement algorithm. In: Proceedings of the 20th International Conference on Very Large Data Bases (VLDB 1994), San Francisco, CA, USA, pp. 439–450 (1994)
Acknowledgments
This work was partially supported by the BMWi project SAKE (Grant No. 01MD15006).
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2017 Springer International Publishing AG
About this paper
Cite this paper
Potocki, A., Hladky, D., Voigt, M. (2017). Challenge Accepted: QUAD Meets MOCHA2017. In: Dragoni, M., Solanki, M., Blomqvist, E. (eds) Semantic Web Challenges. SemWebEval 2017. Communications in Computer and Information Science, vol 769. Springer, Cham. https://doi.org/10.1007/978-3-319-69146-6_2
Download citation
DOI: https://doi.org/10.1007/978-3-319-69146-6_2
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-69145-9
Online ISBN: 978-3-319-69146-6
eBook Packages: Computer ScienceComputer Science (R0)