Abstract
A software for processing sets of full-color images of biological tissue histological sections is developed. We used histological sections obtained by the method of high-precision layer-by-layer grinding of frozen biological tissues. The software allows restoring the image of the tissue for an arbitrary cross-section of the tissue sample. Thus, our method is designed to create a full-color 3D reconstruction of the biological tissue structure. The resolution of 3D reconstruction is determined by the quality of the initial histological sections. The newly developed technology available to us provides a resolution of up to 5–10 μm in three dimensions.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Azinfar, L., Ravanfar, M., Wang, Y., Zhang, K., Duan, D., Yao, G.: High resolution imaging of the fibrous microstructure in bovine common carotid artery using optical polarization tractography. J. Biophotonics 10, 231–241 (2017). doi:10.1002/jbio.201500229
Bobroff, V., Chen, H.-H., Delugin, M., Javerzat, S., Petibois, C.: Quantitative IR microscopy and spectromics open the way to 3D digital pathology. J. Biophotonics 10, 598–606 (2017). doi:10.1002/jbio.201600051
Brazina, D., Fojtik, R., Rombova, Z.: 3D visualization in teaching anatomy. Procedia Soc. Behav. Sci. 143, 367–371 (2014). doi:10.1016/j.sbspro.2014.07.496
Candemir, S., Jaeger, S., Antani, S., Bagci, U., Folio, L.R., Xu, Z., Thoma, G.: Atlas-based rib-bone detection in chest X-rays. Comput. Med. Imaging Graph. 51, 32–39 (2016). doi:10.1016/j.compmedimag.2016.04.002
Cerveri, P., Manzotti, A., Confalonieri, N., Baroni, G.: Automating the design of resection guides specific to patient anatomy in knee replacement surgery by enhanced 3D curvature and surface modeling of distal femur shape models. Comput. Med. Imaging Graph. 38(8), 664–674 (2014). doi:10.1016/j.compmedimag.2014.09.001
Chen, Y., Wang, Z., Li, L., Wan, X., Sun, F., Zhang, F.: A fully automatic geometric parameters determining method for electron tomography. In: Cai, Z., Daescu, O., Li, M. (eds.) ISBRA 2017. LNCS, vol. 10330, pp. 385–389. Springer, Cham (2017). doi:10.1007/978-3-319-59575-7_39
Chiorean, L.D., Szasz, T., Vaida, M.F., Voina, A.: 3D reconstruction and volume computing in medical imaging. Acta Technica Napocensis 52(3), 18–24 (2011)
Cuijpers, V.M.J.I., Walboomers, X.F., Jansen, J.A.: Three-dimensional localization of implanted biomaterials in anatomical and histological specimens using combined x-ray computed tomography and three-dimensional surface reconstruction: a technical note. Tissue Eng. Part C Methods 16, 63–69 (2010). doi:10.1089/ten.TEC.2008.0604
Ermilov, S.A., Su, R., Conjusteau, A., Anis, F., Nadvoretskiy, V., Anastasio, M.A., Oraevsky, A.A.: Three-dimensional optoacoustic and laser-induced ultrasound tomography system for preclinical research in mice: design and phantom validation. Ultrason. Imaging 38, 77–95 (2016). doi:10.1177/0161734615591163
Ha, J.F., Morrison, R.J., Green, G.E., Zopf, D.A.: Computer-aided design and 3-dimensional printing for costal cartilage simulation of airway graft carving. Otolaryngol. Head Neck Surg. 1–4 (2017). doi:10.1177/0194599817697048
Hanney, M.B., Hillel, P.G., Scott, A.D., Lorenz, E.: Half-body single photon emission computed tomography with resolution recovery for the evaluation of metastatic bone disease: implementation into routine clinical service. Nuclear Med. Commun. 38, 623–628 (2017). doi:10.1097/MNM.0000000000000686
Ioakemidou, F., Ericson, F., Spuhler, J., Olwal, A., Forsslund, J., Jansson, J., Pysander, E.-L.S., Hoffman, J.: Gestural 3D interaction with a beating heart: simulation, visualization and interaction. In: Proceedings of SIGRAD 2011, KTH, Stockholm, pp. 93–97 (2011)
Ko, Z.Y.G., Mehta, K., Jamil, M., Yap, C.H., Chen, N.: A method to study the hemodynamics of chicken embryo’s aortic arches using optical coherence tomography. J. Biophotonics 10, 353–359 (2017). doi:10.1002/jbio.201600119
Lee, R.C., Darling, C.L., Staninec, M., Ragadio, A., Fried, D.: Activity assessment of root caries lesions with thermal and near-IR imaging methods. J. Biophotonics 10, 433–445 (2017). doi:10.1002/jbio.201500333
Mohammed, I.M., Tatineni, J., Cadd, B., Gibson, I.: Advanced auricular prosthesis development by 3D modelling and multi-material printing. In: Proceedings of the International Conference on Design and Technology. DesTech Conference, Geelong, pp. 37–43 (2017). doi:10.18502/keg.v2i2.593
Murino, L., Granata, D., Carfora, M.F., Selvan, S.E., Alfano, B., Amato, U., La-robina, M.: Evaluation of supervised methods for the classification of major tissues and sub-cortical structures in multispectral brain magnetic resonance images. Comput. Med. Imaging Graph. 38(5), 337–347 (2014). doi:10.1016/j.compmedimag.2014.03.003
Novochadov, V.V., Khoperskov, A.V., Terpilovskiy, A.A., Malanin, D.A., Tiras, K.P., Kovalev, M.E., Astakhov, A.S.: Virtual full-color three-dimensional reconstruction of human knee joint by the digitization of serial layer-by-layer grinding. In: Mathematical Biology and Bioinformatics. Reports of the VI International Conference, Puschino, pp. 76–78 (2016)
Novochadov, V.V., Shiroky, A.A., Khoperskov, A.V., Losev, A.G.: Comparative modeling the thermal transfer in tissues with volume pathological focuses and tissue engineering constructs: a pilot study. Eur. J. Mol. Biotechnol. 14, 125–138 (2016). doi:10.13187/ejmb.2016.14.125
Novochadov, V.V., Terpilovsky, A.A., Shirokiy, A.A., Tiras, K.P., Klimenko, A.S., Klimenko, S.V.: Visual analytics based on recoding input color information in 3D-reconstructions of human bones and joint. In: C-IoT-VRTerro 2016, pp. 257–260. Institute of Physical and Technical Informatics, Protvino (2016)
Papantoniou, I., Sonnaert, M., Geris, L., Luyten, F.P., Schrooten, J., Kerck-hofs, G.: Three-dimensional characterization of tissue-engineered constructs by contrast-enhanced nanofocus computed tomography. Tissue Eng. Part C Methods 20, 177–187 (2014). doi:10.1089/ten.TEC.2013.0041
Polyakov, M.V., Khoperskov, A.V.: Mathematical modeling of radiation fields in biological tissues: the definition of the brightness temperature for the diagnosis. Sci. J. VolSU Math. Phys. 5(36), 73–84 (2016). doi:10.15688/jvolsu1.2016.5.7
Terpilovskij, A.A., Kuz’min, A.L., Lukashkina, R.A.: Method for creating a virtual model of a biological object and a device for its implementation. Patent of the Russian Federation. Invention No. 2418316, 10 May 2011. Bull. 13
Terpilovskiy, A.A., Tiras, K.P., Khoperskov, A.V., Novochadov, V.V.: The possibilities of full-color three-dimensional reconstruction of biological objects by the method of layer-by-layer overlapping: knee joint of a rat. Sci. J. Volgograd State Univ. Nat. Sci. 4, 6–14 (2015). doi:10.15688/jvolsu11.2015.4.1
Turlapov, V.E., Gavrilov, N.I.: 3D scientific visualization and geometric modeling in digital biomedicine. Sci. Vis. 7(4), 27–43 (2015)
Uma Vetri Selvi, G., Nadarajan, R.: A rapid compression technique for 4-D functional MRI images using data rearrangement and modified binary array techniques. Australas. Phys. Eng. Sci. Med. 38, 731–742 (2015). doi:10.1007/s13246-015-0385-y
Weber, L., Langer, M., Tavella, S., Ruggiu, A., Peyrin, F.: Quantitative evaluation of regularized phase retrieval algorithms on bone scaffolds seeded with bone cells. Phys. Med. Biol. 61, 215–231 (2016). doi:10.1088/0031-9155/61/9/N215
Xu, X., Chen, X., Li, F., Zheng, X., Wang, Q., Sun, G., Zhang, J., Xu, B.: Effectiveness of endoscopic surgery for supratentorial hypertensive intracerebral hemorrhage: a comparison with craniotomy. J. Neurosurg. 1–7 (2017). doi:10.3171/2016.10.JNS161589
Acknowledgments
KAV and AAS are thankful to the Ministry of Education and Science of the Russian Federation (project No. 2.852.2017/4.6). NVV thanks the RFBR grant and Volgograd Region Administration (No. 15-47-02642).
Author information
Authors and Affiliations
Corresponding authors
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2017 Springer International Publishing AG
About this paper
Cite this paper
Khoperskov, A.V. et al. (2017). Software for Full-Color 3D Reconstruction of the Biological Tissues Internal Structure. In: Siuly, S., et al. Health Information Science. HIS 2017. Lecture Notes in Computer Science(), vol 10594. Springer, Cham. https://doi.org/10.1007/978-3-319-69182-4_1
Download citation
DOI: https://doi.org/10.1007/978-3-319-69182-4_1
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-69181-7
Online ISBN: 978-3-319-69182-4
eBook Packages: Computer ScienceComputer Science (R0)